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Abstract 

This study examines the effect transient and frequency response on RC and RLC circuits to 

Instantaneous forcing functions. The governing equations of electrical vibration for both circuits 

were formulated using Kirchhoff’s voltage law. The Laplace transform method was employed to 

find the transfer functions of both circuits giving solutions as frequency response and transient 

response respectively. It was observed that for transient response of both RC and RLC circuits, a 

voltage surge occurs immediately after t=0 and this phenomenon repeats after every second. 

While for the frequency response of both circuits, it was observed that for low-pass voltage, 

frequencies lower than 2000Hz are required and for high-pass voltage, frequencies higher than 

104Hzare needed for optimal functionality. 

Keywords: Transient, Frequency, Instantaneous, Vibration, Transfer, Circuits. 

 

1.0 Introduction   

Equations of electrical vibrations are very important in understanding the behaviour of electrical 

circuits especially, where there is a tendency for a voltage surge which can in turn damage 

electrical components and this has prompted a lot of studies on electrical circuits. Lee and 

Ormsby (1992) presented a new model for the qualitative analysis of electrical circuit behaviour. 

They showed that a qualitative representation of electrical resistance provided a good intuitive 

model of connectivity. Harwood (2011) modelled an RLC circuit’s current with differential 

equations. The circuit was powered by a solar source that had its output voltage passed through 

an inverter to produce an AC output signal which then made the voltage to become a sinusoidal 

function of time. Creighton (2011) presented an overview of the Laplace transform along with its 
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application to several well-known electrical circuits. He focused on systems containing 

discontinuous forcing terms. Each analytical solution was tested empirically against the actual 

behaviour of the circuit. In another light, Sheikh (2012) estimated the optimal time step and 

compared it with the ODE solver of Matlab package of RLC circuit using numerical methods. In 

order to achieve this, a table was constructed for the model to evaluate optimal time step and also 

CPU time into the simulation using Matlab 7.6.0 (R2008a). Manuel, Jose and Juan (2014) carried 

out a research on fractional RC and LC electrical circuits whose derivatives are of the Caputo 

type. The order of the derivative considered was0 <  𝛾 < 1. To keep the dimensionality of the 

physical parameters R, L, C, the new parameterσ was introduced. Omijeh and Ogboukebe (2015) 

investigated the performance of a transfer function characteristic of an RLC circuit, asserted that 

the method of analysing RLC circuits was never constant and since the resistor, inductor and the 

capacitor were used in every electronic system, a proper understanding of the system was 

necessary to know what happened to the system when any parameter is altered. 

In these studies however, the forcing functions are not instantaneous. Instantaneous forcing 

functions known as the Impulse or Dirac delta functions represent the voltage surge in the circuit. 

Thus, this paper examines the transient and frequency response of RC and RLC circuits to 

instantaneous forcing function. The governing equations of electrical vibration for both circuits 

are formulated using Kirchhoff’s voltage law. The Laplace transform method is employed to find 

the transfer functions of both circuits giving solutions as frequency response and transient 

response respectively.Each analytical solution is tested empirically against the actual behaviour 

of RC and RLC circuits. 

2.0 Governing equation 

The governing equations for both RC and RLC circuits are respectively given as: 

 

𝑒(𝑡) =  𝑅 𝑞′(𝑡) +  
1

𝐶
𝑞(𝑡),                                    𝑞(0)

= 0                                                                      (1) 
 

𝑒(𝑡) = 𝐿 
𝑑2𝑞(𝑡)

𝑑𝑡2
+  𝑅 

𝑑𝑞(𝑡)

𝑑𝑡
+  

1

𝑐
𝑞(𝑡),           𝑞(0) = 0,      𝑞′(0) = 0                                            (2) 

 

where, 𝑒(𝑡) is a rectangular pulse wave representing the voltage source, 𝑞(𝑡) is the quantity of 

charge, t is time given in seconds, L is the inductance of the inductor, R is the resistance of the 

resistor and C is the capacitance of the capacitor. 

 

3.0 Method of Solution 

To obtain the transient and frequency response, Laplace transform method of solution is applied. 

The Laplace transformation is a very powerful tool for solving linear differential equations with 
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constant coefficients encountered in the study of engineering problems. The main advantage of 

Laplace transform method is that it automatically takes care of the initial conditions and the 

direct solution of non-homogeneous differential equations is possible. 

Mathematically, it is defined  

𝐹(𝑠) = 𝐿{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑠𝑡
∞

0

𝑑𝑡                                                                                                           (3) 

where “t” is a real number and “s” is a complex number. 

while, the Inverse Laplace transform can be defined as a transform that permits us to go from 

complex domain “s” to time domain “t”. It is expressed as;   

𝐿−1[𝐹(𝑆)] = 𝑓(𝑡) =  ∫ 𝐹(𝑆)𝑒𝑠𝑡𝑑𝑠
∞

0

                                                                                                       (4) 

 
We will need to define a window function here; a window function is a mathematical function 

that has a zero-value outside of some chosen interval or it is a function that is zero outside of its 

window. Hence the window function is defined as; 

 

𝑤(𝑡) = {
𝑓(𝑡),     0 ≤ 𝑡 < 𝑇
0,         𝑇 ≤ 𝑡 <  ∞ , 𝑡 < 𝑂

                                                                                                       (5) 

 

To get the Laplace transform of the window function𝑤(𝑡), we need to rewrite 𝑓(𝑡) as a sum of 

translated window functions. 

𝑓(𝑡) = 𝑤(𝑡) +  𝑤(𝑡 − 𝑇) +  𝑤(𝑡 − 2𝑇) + ⋯ + =  ∑ 𝑤(𝑡 − 𝑘𝑇)

∞

𝑘=0

                                            (6) 

 

Since the window function is 0 outside of its window,then 

 

𝐻(𝑡 − 𝑘𝑇) = 1                                                                                                                                             (7) 

 

where 𝐻(𝑡 − 𝑘𝑇) is the Heaviside unit step function defined as, 

 

𝐻(𝑡 − 𝑘𝑇) = {
0, 𝑡 < 𝑘𝑇
1, 𝑡 ≥ 𝑘𝑇

                                                                                                                     (8) 

 

and  

 

𝐻(𝑡 − 𝑘𝑇)𝑤(𝑡 − 𝐾𝑇) =  𝑤(𝑡 − 𝑘𝑇)                                                                                                      (9) 

Thus, 
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𝑓(𝑡) = ∑ 𝐻(𝑡 − 𝑘𝑇)𝑤(𝑡 − 𝑘𝑇)                                                                                                          (10) 

∞

𝑘=0

 

 
We now take Laplace transform of 𝑓(𝑡), in equation (10) 

 

𝐿 [𝑓(𝑡)] =  ∑ 𝐿[𝐻(𝑡 − 𝑘𝑇)𝑤(𝑡 − 𝑘𝑇)]                                                                                             (11) 

∞

𝑘=0

 

 

this implies that, 

 

𝐹(𝑠) =  ∑ ∫ 𝐻(𝑡 − 𝑘𝑇)𝑤(𝑡 − 𝑘𝑇)𝑒−𝑠𝑡𝑑𝑡                                                                                     (12)
∞

0

∞

𝑘=0

 

 

To carry out this integration, we will use separation of variables. Let, 

  

𝑥 = 𝑡 − 𝑘𝑇,   𝑡ℎ𝑒𝑛  𝑡 = 𝑥 + 𝑘𝑇   𝑎𝑛𝑑   𝑑𝑡 = 𝑑𝑥                                                                                 (13) 
 

We substitute equation (13) in equation (12) to obtain, 

 

𝐹(𝑠) =  ∑ ∫ 𝐻(𝑥 − 𝑘𝑇 + 𝑘𝑇)𝑤(𝑥 − 𝑘𝑇 + 𝑘𝑇)𝑒−𝑠(𝑥+𝐾𝑇)𝑑𝑥                                                      (14)
∞

0

∞

𝑘=0

 

 

or 

𝐹(𝑠) =  ∑ ∫ 𝐻(𝑥)𝑤(𝑥)𝑒−𝑠(𝑥+𝑘𝑇)
∞

0

∞

𝑘=0

𝑑𝑥      , 𝑥 ≥ 0, 𝐻(𝑥) = 1                                                        (15) 

 
Then, 

𝐹(𝑠) = ∑ ∫ 1 ∗
∞

0

 𝑤(𝑥)𝑒−𝑠𝑥

∞

𝑘=0

𝑒−𝑠𝑘𝑇𝑑𝑥                                                                                                (16) 

or 

𝐹(𝑠) =  ∑ 𝑒−𝑠𝑘𝑇𝑤(𝑠)

∞

𝑘=0

                                                                                                                            (17) 

Since, 

 

∫ 𝑊(𝑥)𝑒−𝑠𝑥𝑑𝑥 = 𝑊(𝑠)                                                                                                                        (18)
∞

0

 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Academy Journal of Science and Engineering (AJSE) vol 11 no 1 

   
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) 
 

The summation in equation (17) is a geometric series, where𝑒−𝑠𝑘𝑇 < 1 and thus, it converges to: 

 

∑(𝑒−𝑠𝑘𝑇)

∞

𝑘=0

=
1

1 − 𝑒−𝑠𝑇
                                                                                                                            (19) 

 

With (19), equation (17) becomes, 

 

𝐹(𝑠) =  𝑤(𝑠) ∑(𝑒−𝑠𝑘𝑇)

∞

𝑘=0

                                                                                                                        (20) 

Thus,  

𝐹(𝑠) = 𝑤(𝑠) ×
1

1 −  𝑒−𝑠𝑇
                                                                                                                        (21) 

 

 

4.0 Solution of the governing equation 

We begin by getting the transient and frequency response of the RC circuit followed by that of 

the RLC circuit. 

 

4.1      Transient response of the RC circuit 

By taking the Laplace transform of equation (1), we get; 

 

𝑒(𝑠) =  𝑅(𝑠𝑞(𝑠) − 𝑞(0))

+
1

𝐶
𝑞(𝑠)                                                                                                        (22) 

 

Applying the initial condition 𝑞(0) = 0,  we have; 

 

𝑒(𝑠) =  𝑅𝑠𝑞(𝑠) +
1

𝐶
𝑞(𝑠)                                                                                                                         (23) 

 

Rearranging equation (23) we obtain, 

 

𝑞(𝑠) =  
𝑒(𝑠)

𝑅𝑠 +
1

𝐶

                                                                                                                                          (24) 

 

We now need to find 𝑒(𝑠) which the Laplace transform isof𝑒(𝑡). To do this, we have to find the 

Laplace transform of its window 𝑤(𝑡)which is given as; 

 

𝑤(𝑡) = 𝐴[𝛿(𝑡)]                                                                                                                                          (25) 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Academy Journal of Science and Engineering (AJSE) vol 11 no 1 

   
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) 
 

 

where A is the amplitude of the rectangular pulse wave with period one and 𝛿(𝑡) is the Dirac 

delta function defined as 

 

𝛿(𝑡) = {
0, 𝑡 ≠ 0

∞, 𝑡 = 0
                                                                                                                              (26) 

 

Now,  

𝐿[𝑤(𝑡)] = 𝐴𝐿[𝛿(𝑡)]                                                                                                                                (27)  

 

That is, 

 

𝐿[𝑤(𝑡)] = 𝐴 ∫ 𝑒−𝑠𝑡
∞

0

𝛿(𝑡)𝑑𝑡                                                                                                                  (28) 

 

We will evaluate the integration by parts; 

 

𝐴 ∫ 𝑒−𝑠𝑡
∞

0

𝛿(𝑡)𝑑𝑡 = 𝐴 (𝑒−𝑠𝑡𝐻(𝑡) |
∞
0

+ ∫ 𝑠𝑒−𝑠𝑡
∞

0

𝐻(𝑡)𝑑𝑡) 

 

                                = 𝐴 (0 + 𝑠 ∫ 𝑒−𝑠𝑡
∞

0

𝐻(𝑡)𝑑𝑡)                                                                                 (29) 

 

= 𝐴𝑠
1

𝑠
                                                                                                                         (30) 

or, 

 

𝐿[𝑤(𝑡)] = 𝐴                                                                                                                                                (31) 
 

where, 

 

𝐻(𝑡) = {
0, 𝑡 < 0
1, 𝑡 ≥ 0

(32) 

 

We note here that if w(s) is the Laplace transform of a window of some function with period T, 

then from equation (21), the Laplace transform of the function is, 

 

𝑒(𝑠) =
𝑤(𝑠)

1 − 𝑒−𝑠
                                                                                                                                         (33)  

 

and equation (24) will then become, 
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𝑞(𝑠) =
1

𝑅𝑠 +
1

𝐶

× 
𝐴

1 − 𝑒−𝑠
                                                                                                                    (34) 

 

Simplifying equation (34) we have, 

 

𝑞(𝑠) =  (

1

𝑅

𝑠 +  
1

𝑅𝐶

) ×  
𝐴

1 − 𝑒−𝑠
                                                                                                             (35) 

 

further simplification yields, 

 

𝑞(𝑠) =
𝐴

𝑅
(

1

𝑠 +
1

𝑅𝑐

) ×
1

1 −  𝑒−𝑠
                                                                                                           (36)  

 

 

or, 

𝑞(𝑠) =  
𝐴

𝑅
(

1

𝑆 +  
1

𝑅𝐶

) ∑ 𝑒−𝑘𝑠

∞

𝑘=0

 , 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑  𝑒−𝑆 < 1                                                                       (37) 

 

which implies, 

 

𝑞(𝑠) = ∑ 𝑒−𝑘𝑠

∞

𝑘=0

(

𝐴

𝑅

𝑆 +  
1

𝑅𝐶

)                                                                                                                 (38) 

 

Taking inverse Laplace transform of equation (38) we have, 

 

𝐿−1[𝑞(𝑠)] =  𝐿−1 [
𝐴

𝑅
∑ (

1

𝑠 +  
1

𝑅𝐶

) × 𝑒−𝑘𝑆

∞

𝑘=0

]                                                                                     (39) 

 

and by second shifting theorem,  

 

𝑞(𝑡) =  
𝐴

𝑅
∑ 𝑒−

(𝑡−𝑘)

𝑅𝐶 𝐻(𝑡 − 𝑘)                                                                                                               (40)

∞

𝑘=0
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Equation (40) gives the transient response of the RC circuit.  

The key point is that for all 𝑡 < 𝑘 , 𝐻(𝑡 − 𝑘) = 0. If we are interested in say, the region 𝑡 < 4, 

we need only calculate up to 𝑘 = 3. 

 

4.2 Frequency response of the Low-pass RC circuit 

The transfer function of the output wave of the low-pass voltage is given as, 

 

𝑇(𝑗𝜔) =  
1 − RC𝑗𝜔

1 + (𝑅𝐶𝜔)2
                                                                                                                              (41) 

 

where 𝜔 is the frequency. 

We now obtain the magnitude and phase shift of the output wave since the magnitude tells us 

about the size of the output wave at different frequencies and the phase shift tells us about the 

angles at which magnitude occurs. 

 

4.2.a The magnitude of the output wave 

The magnitude of the output wave is obtained by taking the absolute value of equation (41) 

i.e. 

|T(jω)| = √(
1

1 + (𝑅𝐶𝜔)2
)

2

+ (
−𝑅𝐶𝜔

1 + (𝑅𝐶𝜔)2
)

2

                                                                       (42) 

 

The plot of the magnitude is given as, 

 

Magnitude (decibel) = 10 log10|T(jω)|2                                                                                               (43) 

 

4.2.b The phase shift of the output wave 

The phase shift of the output wave is the angle of equation (41) given in degrees as, 

 

Phase shift = 𝑡𝑎𝑛−1 (
𝑖𝑚[𝑇(𝑗𝜔)]

𝑟𝑒[𝑇(𝑗𝜔)]
)                                                                                                       (44) 

 

or, 
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𝑃ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 =  𝑡𝑎𝑛−1 (
−𝑅𝐶𝑤

1 + (𝑅𝐶𝜔)2
×

1 + (𝑅𝐶𝜔)2

1
)                                                                   (45) 

Thus, 

Phase shift = 𝑡𝑎𝑛−1(−𝑅𝐶𝜔)                                                                                                                  (46)  
 

 

 

4.3 Frequency response of the high-pass RC circuit 

The transfer function of the output wave of a high-pass voltage is given as, 

 

𝑇(𝑗𝜔) =
(𝑅𝐶𝜔)2 + 𝑅𝐶𝑗𝜔

(𝑅𝐶𝜔)2 + 1
                                                                                                                       (47) 

and 𝜔 is the frequency 

4.3.a The Magnitude of the output wave 

The magnitude of the output wave is calculated in a similar way to that of the low-pass voltage. 

|𝑇(𝑗𝜔)| = √(
(𝑅𝐶𝜔)2

1 + (𝑅𝐶𝜔)2
)

2

+ (
𝑅𝐶𝜔

1 + (𝑅𝐶𝜔)2
)

2

                                                                              (48) 

 

4.3.b Phase shift of the output wave 

The phase shift here is also calculated in a similar fashion to that of the low-pass voltage. 

 

Phase shift = 𝑡𝑎𝑛−1 (
𝑖𝑚[𝑇(𝑗𝜔)]

𝑟𝑒[𝑇(𝑗𝜔)]
)                                                                                                       (49) 

 

or, 

Phase shift = 𝑡𝑎𝑛−1 (
1

𝑅𝐶𝜔
)                                                                                                                  (50) 

 

 

4.4       Transient response of the RLC circuit 

Applying the Laplace transform to equation (2) we obtain, 

 

𝑒(𝑠) =  𝑅𝑠𝑞(𝑠) + 
𝑞(𝑠)

𝐶
+  𝐿𝑠2𝑞(𝑠)                                                                                                      (51) 
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Rearranging equation (51) we have, 

 

𝑞(𝑠) =
𝑒(𝑠)

𝐿𝑠2 + 𝑅𝑠 +
1

𝐶

                                                                                                                               (52) 

 

We recall that the input voltage 𝑒(𝑡) is a rectangular pulse wave having a period of one and 

defined as, 

 

𝑒(𝑡) = 𝐴𝛿(𝑡)                                                                                                                                               (53) 

The Laplace transform of equation (53)is, 

 

𝑒(𝑠) =
𝐴

1 − 𝑒−𝑠
                                                                                                                                          (54) 

 

Using equation (54) in (52) we obtain, 

𝑞(𝑠) =
𝐴

1 − 𝑒−𝑠
×

1

𝐿𝑠2 + 𝑅𝑠 +
1

𝐶

                                                                                                          (55) 

Noting that, 

 

1

1 − 𝑒−𝑠
= ∑ 𝑒−𝑘𝑠

∞

𝑘=0

                                                                                                                                   (56) 

 

Equation (55) becomes, 

 

𝑞(𝑠) = 𝐴 ∑ 𝑒−𝑘𝑠

∞

𝑘=0

1

𝐿𝑠2 + 𝑅𝑠 +
1

𝐶

                                                                                                           (57) 

or, 

𝑞(𝑠) = 𝐴 ∑ 𝑒−𝑘𝑠

∞

𝑘=0

1

𝐿 (𝑠2 +
𝑅𝑠

𝐿
+

1

𝐿𝐶
)

                                                                                                   (58) 

 

Hence, 

𝑞(𝑠) =
𝐴

𝐿
∑ 𝑒−𝑘𝑠

∞

𝑘=0

1

(𝑠 +
𝑅

2𝐿
)

2

+
1

𝐿𝐶
− (

𝑅

2𝐿
)

2                                                                                       (59) 

If we let, 
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𝑏2 =
1

𝐿𝐶
− (

𝑅

2𝐿
)

2

                                                                                                                                      (60) 

 

Then we can write equation (59) as, 

 

𝑞(𝑠) =
𝐴

𝐿𝑏
∑ 𝑒−𝑘𝑠

∞

𝑘=0

𝑏

(𝑠 +
𝑅

2𝐿
)

2

+ 𝑏2

                                                                                                     (61) 

 

Taking the Laplace inverse transform of equation (61) we get, 

 

𝑞(𝑡) =
𝐴

𝐿𝑏
∑ 𝐻(𝑡 − 𝑘)𝑒−

𝑅(𝑡−𝑘)

2𝐿 Sinb(t − k)

∞

𝑘=0

                                                                                      (62) 

 

Equation (62) is the transient response of the RLC circuit. 

4.5 Frequency response of the low-pass RLC circuit 

The transfer function of the output wave of the low-pass voltage is given as, 

 

𝑇(𝑗𝜔) = −
1

𝐿𝐶𝜔2 − 𝑅𝐶𝑗𝜔 − 1 
                                                                                                          (63) 

 

4.5.a The Magnitude of the output wave 

The magnitude of the output wave is the absolute value of (63) given as, 

 

|𝑇(𝑗𝜔)| = √
1

(𝐿𝐶𝜔2 − 𝑅𝐶𝜔 − 1 )2
                                                                                                       (64) 

 

 

4.5.b The phase shift of the output wave 

The phase shift of the output wave is the angle of equation (63) given in degrees, 

 

Phase shift = 𝑡𝑎𝑛−1 (
𝑖𝑚[𝑇(𝑗𝜔)]

𝑟𝑒[𝑇(𝑗𝜔)]
)                                                                                                       (65) 

4.6 Frequency response of the high-pass RLC circuit 

The transfer function of the output wave of the high-pass voltage is given as, 
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𝑇(𝑗𝜔) =
−𝑅𝐶𝑗𝜔

𝐿𝐶𝜔2 − 𝑅𝐶𝑗𝜔 − 1
                                                                                                                   (66) 

4.6.a The Magnitude of the output wave 

The magnitude of the output wave is given as, 

 

|𝑇(𝑗𝜔)| = √(
𝑅𝐶𝜔

𝐿𝐶𝜔2 − 𝑅𝐶𝜔 − 1
)

2

                                                                                                      (67) 

 

4.6.b Phase shift of the output wave 

 

Phase shift = 𝑡𝑎𝑛−1 (
𝑖𝑚[𝑇(𝑗𝜔)]

𝑟𝑒[𝑇(𝑗𝜔)]
)                                                                                                       (68) 

 

5.0 Numerical Results and Discussion 

To illustrate the analysis presented in this work, we consider for the RC circuit, the following 

values: 𝑅 = 954.14𝛺, 𝐶 = 0.2258𝜇𝐹and𝐴 = 10𝑉(𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑜𝑢𝑟𝑐𝑒, 𝑃𝑒𝑎𝑘𝑒𝑑 𝑣𝑎𝑙𝑢𝑒). 

While for the RLC circuit, the values are𝑅 = 0.5999𝛺, 𝐶 = 2262𝜇𝐹,𝐿 = 39.9𝑚𝐻 and 𝐴 =

10𝑉.  

Figure 1 displays the transient response of the RC circuit. It is observed that the highest voltage 

for this circuit over the time range (0, 6) occurs at time 𝑡 = 1 after which the voltage tends to 

zero. In figures 2 and 3, the amplitude of the frequency response of the low-pass RC circuit and 

phase of the frequency response of the same circuit respectively are depicted. It is clearly seen 

that the cut-off frequency for the low-pass RC circuit is 2000Hz which tallies with -3dB and the 

phase angle is -14 degrees. Thus, for frequencies higher than 2000Hz, the low-pass RC circuit 

will cease to function. The amplitude of the frequency response of a high-pass RC circuit and the 

phase of the frequency response of the same circuit are displayed in figures 4 and 5 respectively. 

It is shown that the cut-off frequency for the high-pass RC circuit occurs at 8000Hz which 

corresponds with -3dB and the phase angle is 45 degrees. Hence for the high-pass RC circuit to 

operate normally, frequencies higher than 8000Hz are required. 

In the case of the RLC circuits, the transient response of the circuit is displayed in figure 6. It is 

seen that a voltage surge occurs immediately after t=0 and this phenomenon repeats after every 

second. Figures 7 and 8 depict the amplitude of the frequency response of the low-pass RLC 

circuit and phase of the frequency response of the same circuit respectively. It is observed that 

the cut-off frequency for the low-pass RLC circuit is 4 × 104Hz with a phase angle of -162 

degrees and as such frequencies lower than 4 × 104Hz are required for the low-pass RLC circuit 

to function optimally. In figures 9 and 10, the amplitude of the frequency response of a high-pass 
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RLC circuit and the phase of the frequency response of the same circuit are displayed. It is 

clearly seen that the cut-off frequency occurs at 104Hz with a phase angle of -44 degrees and as 

a result, the high-pass circuit requires higher frequencies than 104Hz for it to work optimally. 

 

 

 

 

 

 

Figure 1: Behaviour of an RC circuit-Transient response 
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Figure 2: Amplitude of the frequency response of a low-pass RC circuit 

 

 

 

 

 

Figure 3: Phase of the frequency response of a low-pass RC circuit 
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Figure 4: Amplitude of the frequency response of a high-pass RC circuit 

 

           Figure 5: Phase of the frequency response of a high-pass RC circuit 
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               Figure 6: Behaviour of an RLC circuit – Transient response 

 

 

 

 

 

 

 
Figure 7: Amplitude of the frequency response of a low-pass RLC circuit 
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         Figure 8: Phase of the frequency response of a low-pass RLC circuit 

 

Figure 9: Amplitude of the frequency response of a high-pass RLC circuit 
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Figure 10: Phase of the frequency response of a high-pass RLC circuit 

 

6.0 Comments and Conclusion 

The transient and frequency response of RC and RLC circuits to Instantaneous forcing functions 

has been investigated in this study. The governing equations of electrical vibration for both 

circuits were formulated using Kirchhoff’s voltage law. The Laplace transform method was 

employed to find the transfer functions of both circuits giving solutions as frequency response 

and transient response respectively. Each analytical solution was tested empirically against the 

actual behaviour of RC and RLC circuits. Results show that; 

For the RC circuit, 

i) The highest voltage over the time range (0, 6) occurs at 𝑡 = 1 after which the voltage 

tends to zero. 

ii) For frequencies higher than 2000𝐻𝑧, the low-pass RC circuit would cease to function. 

iii) For the high-pass RC circuit to operate normally, frequencies higher than 8000𝐻𝑧 are 

required. 

While for the RLC circuit, 

i) A voltage surge occurs immediately after 𝑡 = 0 and this phenomenon repeats after every 

second. 

ii)      Frequencies lower than 4 × 104𝐻𝑧 are required for the low-pas RLC circuit to function 

optimally. 

iii)      The high-pass circuit requires higher frequency than 104𝐻𝑧 for it to work optimally. 
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