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Abstract

Sickle cell disease (SCD) patients have characteristic abnormal haemoglobins that cause red blood cells to
become sickle-like in shape, leading to various complications. Early detection is desirous, yet existing
diagnostic methods require high cost and deep learning curves. This study evaluated the potential of three
machine learning (ML) algorithms—Random Forest, Support Vector Machine (SVM), and a Neural
Network—in detecting sickle cell genotypes (SS, AS, AA) from a Nigerian dataset of 54 participants using
haemorheological parameters. We employed a stratified 5-fold cross-validation methodology to ensure reliable
performance evaluation. The Random Forest and SVM models achieved the highest mean accuracy at 90.9%
+ 5.8%. Feature importance analysis confirmed Packed Cell Volume (PCV) as the most discriminative
parameter, followed by Plasma Viscosity (PV) and Age. While all models demonstrated high sensitivity in
identifying sickle cell anaemia (SS), they consistently failed to correctly classify the sickle cell trait (AS), a
critical limitation highlighted by the validation. Our findings suggest that ML leveraging routine lab
parameters is a promising screening tool for sickle cell disease, but is not yet viable for comprehensive
genotype classification due to challenges with small dataset size and class imbalance. Future works need to
focus on acquiring larger, more balanced datasets to improve the detection of the AS trait.
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1.0 INTRODUCTION

Sickle cell disease (SCD) is among known
blood disorders characterized by the presence
of abnormal hemoglobin S (HbSS), which
causes red blood cells to “sickle” in shape for a
life span of about 20 days. HbSS is the most
common variant of SCD genotypes and affects
millions of people worldwide, with the highest
prevalence in sub-Saharan Africa, the
Mediterranean region, the Middle East, and
parts of India. Clinical manifestations of SCD
are diverse and potentially severe, including
vaso-occlusive crises, acute chest syndrome,
stroke, and organ damage, resulting in
significant death rates and reduced life
expectancy (Elsabagh et al., 2023).

The genetic basis of SCD is rooted in the point
mutations in the beta-globin gene (HBB), with
homozygosity for the HbS allele (HbSS)
resulting in sickle cell anaemia, the most
common and severe form of SCD.
Heterozygosity for HbS (HbAS), known as
sickle cell trait, is generally considered a
benign carrier state, although it can be
associated with certain health risks under
extreme conditions. Other genotypes, such as
HbSC and HbS-beta thalassemia, represent
compound heterozygous states with varying
clinical severity (Arishi et al., 2021).

Early detection of SCD is crucial for
implementing preventive measures and
appropriate management strategies to reduce
complications and improve quality of life.
Traditional diagnostic approaches for SCD
include complete blood cell count, hemoglobin
electrophoresis,  high-performance  liquid
chromatography (HPLC), isoelectric focusing,
solubilty sickling test, and molecular genetic
testing (Arishi et al.,, 2021; Elsabagh et al.,
2023). While these techniques offer accurate
genotype determination, they often require
specialized equipment, trained personnel, and
substantial ~ resources, limiting  their
accessibility in resource-constrained settings

where the burden of SCD is highest (Alapan et
al., 2016; Arishi et al., 2021; Elsabagh et al.,
2023).

Recent technological developments have raised
interest in leveraging machine learning
techniques to enhance the detection and
management of SCD. Machine learning, a
subset of artificial intelligence, involves the
design of algorithms that can learn patterns from
data and make predictions or decisions without
a need for explicit instructions from human
experts. These initiatives have shown promise in
various medical applications, including disease
diagnosis, prognosis prediction, and treatment
optimization (Machado et al., 2024).

Application of ML techniques to SCD detection
enriches healthcare system in various ways. ML
algorithms can identify inherent complex, non-
linear  relationships  between laboratory
parameters and disease states which might not
be apparent through traditional approaches.
Likewise, they are capable of integrating
multiple parameters to improve diagnostic
accuracy, potentially reducing the need for
specialized tests. And lastly, ML models
developed though domain data can be deployed
on portable devices or integrated into existing
healthcare systems, enhancing accessibility and
scalability of screening programs (Goswami et
al., 2024).

Haemorheological parameters, which describe
the flow properties of blood and its components,
are particularly related to SCD
pathophysiology. The sickling of red blood cells
in SCD foster alterations in blood viscosity, cell
deformability, and other rheological properties
which can be measured through various
clinical/laboratory techniques. These easily-
measured parameters might serve as valuable
inputs for ML algorithms aimed at detecting
SCD or predicting Red Blood Cell (RBC)
motions as a marker of complications related to
SCD (Darrin et al., 2023).
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Challenges faced in the application of ML in
SCD detection include the need for large,
diverse, and well-annotated datasets for
algorithm training and validation; selection of
appropriate features or parameters that provide
meaningful discriminative power;
interpretability of ML models to facilitate
clinical adoption and trust; and the
generalizability of algorithms across different
populations and healthcare settings (Zhu et al.,
2023).

Despite the growing body of literature on ML
for SCD, a significant gap remains in the
application of these models to the specific
context of genotype classification using readily
available haemorheological parameters from a
high-prevalence region like Nigeria. Previous
studies have primarily focused on image-based
classification or prediction of clinical
outcomes, often relying on complex data
modalities that are not routinely accessible in
resource-limited settings (de Haan et al, 2020;
Alzubaidi et al, 2020). Nigerian population
harbours the high burden of SCD (Adigwe et
al, 2023). Therefore, the actual research
question this study seeks to address is: To what
extent can a model trained on simple, routinely
measured haemorheological parameters from a
Nigerian cohort accurately classify the three
major sickle cell genotypes (AA, AS, SS), and
what are the specific limitations of this
approach, particularly concerning the clinically
challenging Sickle Cell Trait (AS)? This work
provides a crucial justification for a cost-
effective, non-invasive screening tool that can
be integrated into existing primary healthcare
infrastructure in endemic regions, thereby
offering a practical and scalable solution to
enhance early detection and management of
SCD (Ekong et al, 2023; Long et al, 2024)

The research approach some of the stated
challenges by investigating the efficacy of
different ML algorithms in determining
haemoglobin genotype from well-annotated

hematological and haemorheological
parameters to inform sickle cell detection.
Specifically, we compared the performance of
Random Forest, Support Vector Machine
(SVM), and Neural Network algorithms in
classifying individuals into different genotype
categories (SS, AS, and AA) leveraging on
parameters such as packed cell volume (PCV),
whole blood viscosity (WBYV), plasma
viscosity (PV), platelet count (PLT), and white
blood cell count (WBC).

Findings from this study could contribute to the
development of more accessible and cost-
effective  screening processes for SCD,
particularly in underserved settings. By
leveraging routine laboratory parameters and
ML techniques, we aim to enhance the early
detection of SCD and facilitate appropriate
management, potentially improving outcomes
for affected individuals.

2.0 LITERATURE REVIEW

Image-based techniques have been particularly
prominent in SCD detection research.
Alzubaidi et al. (2020) developed lightweight
deep learning(DL) models for classifying
erythrocytes into normal, sickle cells, and other
blood content categories. This approach
achieved 99.54% accuracy using their model
alone and 99.98% accuracy when combined
with a  multi-class  support  vector
machine(SVM) classifier. Likewise, de Haan
et al. (2020) designed a DL framework for
automated screening of sickle cells using a
smartphone-based  microscope, achieving
approximately 98% accuracy with an area-
under-the-curve(ROC) score of 0.998 in tests
involving 96 unique patients.

The challenge of detecting overlapping red
blood cells, a common occurrence in clinical
samples, was addressed by Vicent et al. (2022).
They developed an algorithm using canny edge
detection and double threshold machine
learning techniques, with an achievement of
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98.18% overall accuracy, 98.29% sensitivity,
and 97.98% specificity when tested on 1,000
digital images at various magnification scales.

More recently, Goswami et al. (2024)
proposed a semi-automated system for
capturing digital images of blood smears to
detect SCD, combining hardware for image
capture with deep learning algorithms for
classification. The approach achieved an
average accuracy of around 97% using
various deep learning models including
Darknet-19, ResNet50, and GoogleNet,
demonstrating the potential of integrated
approaches for SCD detection.

Through comparative studies, researchers
have provided insights into the relative
performance of different ML techniques for
SCD detection. Kawuma et al. (2023)
evaluated several pre-trained deep learning
models including VGG16, VGG19, ResNet,
Inception V3, and ResNet50 using the same
dataset, and found out that Inception V3
yielded the highest accuracy at 97.3%,
followed by VGG19 at 97.0%. This type of
systematic comparison is valuable for
identifying the most effective algorithms for
specific applications in SCD detection.
Beyond image-based classification, ML has
been applied to other data modalities for SCD
detection and management. The integration of
ML with novel imaging modalities has also
shown great promise. Chen et al. (2023)
introduced holographic cytometry combined
with deep learning for comprehensive
morphological profiling of red blood cells in
SCD, achieving an average accuracy of
93.17% across multiple samples, with four out
of four normal subject samples showing
above 94% accuracy. This approach
highlights the value of advanced imaging
techniques coupled with ML for detailed
cellular analysis.

Recent developments in the application of Al
in healthcare have also focused on enhancing

the interpretability and privacy aspects of ML
for disease detection. In the detection of SCD,
for instance, Dipto et al. (2024) proposed a
federated learning framework for red blood cell
abnormality detection, achieving 94-95%
accuracy while maintaining data confidentiality.
They employed GradCam-driven Explainable
Al techniques to verify classification results,
making the model's decision-making process
more transparent and trustworthy.

2.1 Haemorheological
Parameters in Sickle Cell
Disease

Haemorheological  parameters are flow
properties of blood and its components. They
play a crucial role in the pathophysiology of
SCD and have been investigated as potential
biomarkers for disease detection and severity
assessment. The sickling of red blood cells in
SCD leads to changes in blood viscosity, cell
deformability, and other rheological properties
that can be measured through various laboratory
techniques.

Whole blood viscosity (WBV) and plasma
viscosity (PV) are fundamental
haemorheological parameters that represent the
resistance of blood to flow. In SCD, these
parameters are often altered due to the presence
of sickle-shaped red blood cells and deviated
plasma composition. Petrovi¢ et al. (2020)
highlighted the importance of cell morphology
analysis from microscopy images for SCD
diagnosis, emphasizing how morphological
changes in red blood cells affect blood rheology
and can be captured through computational
approaches.

Packed cell volume (PCV), also known as
haematocrit, represents the volume percentage
of red blood cells in blood and is typically
reduced in SCD due to chronic haemolysis.
This parameter, along with other red blood cell
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indices, has been identified as a key predictor
in ML models for SCD detection. Roy et al.
(2024) employed ML techniques to analyze
longitudinal blood pathology data for
predicting the onset and severity of co-
morbidities in SCD patients, finding that
hemoglobin dynamics, including hemoglobin
levels and red blood cell indices, were crucial
indicators.

Platelet count (PLT) and white blood cell count
(WBC) are additional haemorheological
parameters that may be altered in SCD due to
the chronic inflammatory state and increased
cell turnover. These parameters have been
incorporated into various ML models for SCD
detection and severity prediction. Ugucu et al.
(2022) demonstrated that ML models could
predict hemoglobin variants based on red blood
cell indices, hemoglobin values, and retention
time values, with promising performance in
distinguishing between sickle cell and other
hemoglobin variants.

The dynamic behavior of red blood cells
under flow conditions provides another
dimension of haemorheological assessment
relevant to SCD. Ekong et al. (2023)
employed a Bayesian network in classifying
sickle cell anaemia in teenagers based on
medical parameters including age, platelet
count, mean corpuscular haemoglobin
concentration, red blood cell count, and
packed cell volume, achieving a 99%
accuracy. This demonstrates an earlier
attempt to investigate the potential of ML to
leverage routine clinical and laboratory data
for SCD classification.

Ussher et al. (2025) focuses on identifying
hematological biomarkers and assessing ML
models for sickle cell anemia severity
classification. It reinforces the use of routine
hematological parameters as inputs for ML
models, moving beyond simple diagnosis to
severity prediction.

et al. (2022) uses ML to categorize haemoglobin
variants (including AA, AS, SS) using a large
dataset of 752 complete blood count (CBC)
laboratory analyses. It directly supports the
feasibility of our approach in a Nigerian context,
demonstrating the importance of local context
inclusion

Darrin et al. (2023) developed a two-stage ML
pipeline for automatically classifying red
blood cell motions in videos to monitor the
clinical status of SCD patients. Their approach
achieved 97% accuracy in distinguishing
between tank-treading motion (characteristic
of highly deformable RBCs) and flipping
motion (characteristic of poorly deformable
RBCs), demonstrating how  dynamic
haemorheological parameters can inform SCD
monitoring.

Recent advances in imaging and analysis
techniques have expanded the range of
haemorheological parameters available for
ML-based SCD detection. Sadafi et al. (2023)
introduced RedTell, an Al tool for interpretable
analysis of red blood cell morphology that
extracts 135 hand-crafted morphological
features from brightfield and fluorescence
channels. This comprehensive feature
extraction approach enhances the ability to
capture subtle haemorheological alterations
associated with SCD.

2.2 Challenges and Opportunities in
ML-based Sickle Cell Detection

Despite the promising results of ML
applications in SCD detection, several
challenges remain to be addressed. One
significant challenge is the limited availability
of large, diverse, and well-annotated datasets
for algorithm training and validation (Ouchtar,
2023; Okon et al., 2024). Shrestha et al. (2023)
addressed this issue by creating an open-access
dataset comprising over 300,000 images with
1.5 trillion segmented cells from 138
individuals in Canada and Nepal, including
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those with sickle and/or [-thalassemia
mutations. Such comprehensive datasets are
invaluable for advancing research in this field.

Another challenge is the variability in clinical
and laboratory manifestations of SCD,
particularly in heterozygous conditions such as
sickle cell trait. Shrestha et al. (2024) reported
lower performance for distinguishing between
sickle cell trait and normal hemoglobin using
morphology-based classification, highlighting
the need for more sophisticated techniques or
additional biomarkers to improve detection of
heterozygous conditions.

The interpretability of ML models represents
both a challenge and an opportunity in SCD
detection. Complex models such as deep neural
networks may achieve high accuracy but often
function as "black boxes," limiting clinical
trust and adoption. Jennifer et al. (2023)
addressed this issue by incorporating
explainable Al techniques in their deep
learning approach for SCD classification,
enhancing transparency and reliability of the
model's decision-making process.

Resource constraints in settings with high SCD
prevalence  present another  significant
challenge. Long and Bai (2024) developed a
ML model to predict thalassemia using routine
blood parameters, addressing the economic and
time costs associated with genetic testing.
Their approach achieved an area under the
receiver operating characteristic curve of 0.97,
demonstrating the potential of ML to provide
cost-effective screening solutions in resource-
limited settings.

Integration of ML with point-of-care
technologies  represents a  promising
opportunity for expanding access to SCD
screening. Cardoso et al. (2023) proposed a
fusion approach combining conventional
classifiers, segmented images, and
convolutional neural networks for SCD

classification, achieving 99.8% accuracy.
This type of integrated approach could be
adapted for portable, low-cost devices
suitable for use in diverse healthcare contexts.

This research evaluates the efficacy of three
ML algorithms: random forest, support vector
machine, and neural network in the detection
of SCD genotype leveraging a well-annotated
haemorheological dataset, addressing
difficulty in choice of ML model and
unavailability of local datasets.

3.0 MATERIALS AND METHODS

Dataset for this study was obtained from a
tertiary healthcare facility, Haematology Unit of
the Medical Laboratory Department, Federal
Medical Centre, Owo, Ondo state, Nigeria.
Ethical approval was obtained from the
Research Ethics Committees of the Centre.
Informed consents of the subjects were obtained
before enrollment after due explanation of the
aims and procedures of the research, and the
participants were enrolled consecutively.
Privacy and confidentiality of the entire subjects
were guaranteed by removing all elements of
identification from the data to ensure anonymity
of the participants. A total of fifty-four(54)
participants  with  known  haemoglobin
genotypes were recruited, including thirty-
four(34) individuals with sickle cell anaemia
(SS), sixteen(16) with normal haemoglobin
(AA), and four(4) with sickle cell trait (AS).
Participants were recruited during routine
clinical wvisits, and informed consent was
obtained from all individuals or their legal
guardians. The study protocol was approved by
the institutional ethics committee. Inclusion
criteria were: (1) confirmed haemoglobin
genotype by haemoglobin electrophoresis or
high-performance liquid chromatography, (2)
age between 5 and 35 years, and (3) absence of
blood transfusion in the preceding three months.
Exclusion criteria included: (1) concurrent acute
illness or crisis, (2) use of hydroxyurea or other
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disease-therapies, and (3) presence of other

haemoglobinopathies  or  haematological
conditions.
3.1 Sample Collection and

Haemorheological Assessment

We collected blood samples from all
participants following standard venipuncture
techniques. Values of the haemorheological
parameters were obtained using established
laboratory methods. Microhaematocrit method
was used to obtain the Packed cell volume
(PCV) with samples centrifuged at 12,000 rpm
for 5 minutes. Whole blood viscosity (WBYV)
and plasma viscosity (PV) were measured
using a rotational viscometer (Brookfield DV-
II+, Brookfield Engineering Laboratories,
USA) at a shear rate of 230 s™' and temperature
of 37°C. We also determined the Platelet count
(PLT) and white blood cell count (WBC) using
an automated haematology analyzer (Sysmex
XN-1000, Sysmex Corporation, Japan). All
measurements were performed in duplicate,
and the average values were used for analysis.
Quality control procedures were implemented
throughout the data collection process,
including regular calibration of instruments,
use of standard reference materials, and
blinding of laboratory personnel to participant
genotype.

3.2 Data
Selection

Preprocessing and Feature

The dataset consisted of demographic
information (age and sex) and
haemorheological parameters: packed cell
volume(PCV), whole blood viscosity(WBV),
plasma volume(PV), platelet count(PLT), and
white blood cell count(WBC) for each
participant. Prior to model development, the
data underwent several preprocessing steps.
First, descriptive statistics were calculated for

each parameter across genotype groups, and
statistical comparisons were performed using
one-way analysis of variance (ANOVA) with
post-hoc Tukey tests.

Then, correlation analysis was conducted to
identify relationships between
haemorheological parameters and the potential
multi-collinearity issues. Pearson correlation
coefficients were calculated for all pairs of
continuous variables, and the results were
visualized using a correlation matrix(figure 1).

And lastly, feature selection was performed to
identify the most informative parameters for
genotype  prediction.  Univariate  feature
selection using F-scores was employed to rank
individual  parameters based on their
discriminative power. Insightfully, feature
importance was derived from the random forest
model to assess the contribution of each
parameter in a multivariate context.

3.3 Machine Learning Model Development

We implemented three machine learning
algorithms and compared their performances in
the SCD genotype prediction: random
forest(RF), support vector machine(SVM), and
neural network(NN). These algorithms were
selected on consideration of their documented
performances in medical classification tasks and
their ability to handle different types of
relationships in the data, most especially
medical data known with non-linearity. Table 1
below presents the specific configurations used
for the three models implemented in the study.

OOk -

Academy Journal of Science and Engineering 19(5)2025

Page |73

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)



Exploratory Evaluation Ofues

Rahman Abiodun Olalekan....

Table 1: Models and specific feature configurations implemented

S/N Model Features

1 Random Forest Number of trees: 100
Depth: 5
Criterion: Gini Impurity

2 Support Vector Machine Kernel: Radial Basis Function
Regularization Parameter: 1.0
Gamma: 0.2

3 Neural Network (Multi Layered Perceptron) Hidden Layers: 2 (8, 4 neurons

respectively)

Activation Function: Rectified
Linear Unit.

Optimizer: Adam

Learning rate: 0.001

In response to the limited sample size and class
imbalance in the dataset, we employed
stratified k-fold cross-validation (k=5) to
ensure  robust evaluation of model
performance. Model hyperparameters were
optimized using grid search with cross-
validation on the training set.

3.4 Model Evaluation and Comparison

Evaluation of the model performance
employed the following metrics: accuracy,
precision, recall, and F1-score.

the proportion of
instances across all

Accuracy:
correctly
genotypes,

represents
classified

Accuracy = correct classification/Total

classification

Precision (positive predictive value) indicates
the proportion of positive predictions that are
actualy positive,

Precision = correctly classified actual

positives/All classified as positives

while recall (sensitivity) reflects the proportion
of actual positives that are correctly identified,

Recall = correctly classified actual

positives/All actual positives

The F1-score is the harmonic mean of precision
and recall, providing a balanced measure of
model performance.

F1 = 2 x (precision x recall)/(precision +
recall)

Aggregate confusion matrices were generated
for the models to visualize the pattern of correct
and incorrect classifications across different
genotypes. Statistical comparisons between
models were performed using t-test for paired
nominal data. All statistical analyses and
machine learning implementations were
conducted using Python 3.8 with scikit-learn
0.24.2, TensorFlow 2.6.0, and other required
libraries. Statistical significance was set at p <
0.05 for all comparisons.
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4.0 RESULTS AND DISCUSSIONS

4.1 Haematorheological Profile by Genotype

Table 2: Haemorheological Parameters by Genotype (Mean £ SD)

PARAMETER SS(N=34) AA(n=16) AS(n=4) p-value
Age (years) 14.82 £ 6.41 17.19 £ 7.65 16.25+7.23 0.33
PCV (%) 22.15+5.84 37.41 £6.32 33.55+3.78 <0.001*
WBV 3.71 £0.58 4.52 +£0.48 4.33+0.31 <0.001*
PV

1.98 £0.32 1.59+0.12 1.68 £0.15 <0.001*
PLT (x10°L) 253.21+83.42 183.75 £ 42.65 19525 +38.73  0.003*
WBC (x10°/L)  6.42+1.31 511+1.12 528+1.25 0.001*
*Statistically significant difference (p < 0.05)
described in  pediatric SCD  cohorts

Table 2: Descriptive statistics of
haemorheological parameters by genotype
(SS, AA, AS) and p-values of group
comparisons.

The results shown in table 2 are consistent with
the well-documented pathophysiology of
sickle cell disease (SCD). PCV is markedly
reduced in SS patients, reflecting chronic
haemolysis, while WBV is lower because
“sickled” erythrocytes become less deformable
(Elsabagh et al., 2023). The elevated PV in SS
subjects mirrors increased plasma fibrinogen
and other acute-phase reactants
(Roy etal., 2024). The platelet and leukocyte
elevations align with the inflammatory milieu

(Machado et al., 2024).
4.2 Correlation Analysis

A Pearson correlation matrix (Figure 1)
confirmed strong positive links between PCV and
age (r=0.66, p<0.001) and a moderate association
between PV and fibrinogen (r=0.45, p<0.001),
corroborating  earlier  observations that
age-dependent haemoglobin changes influence
rheology (Petrovi¢ et al., 2020). No
multicollinearity ([r|>0.8) was detected,
allowing all five haemorheological variables to
be retained for modelling.
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Correlation Matrix of Numerical Features
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Figure 1: Pearson correlation matrix of the haemorheological parameters. The color intensity and
numbers represent the strength and direction of correlations, with red indicating positive
correlations and blue indicating negative correlations.
Importance analyses converge on PCV as the
dominant predictor, followed by PV and WBV.

4.3 Feature Importance Analysis This mirrors the findings of Ugucu et al. (2022) who
o . reported PCV as the top feature for
As shown in Figures 2 and 3 respectively, both hemoglobin-variant classification using routine labs.

univariate  F-score and Random-Forest
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Feature Importance for Genotype Prediction
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Figure 2: Feature importance for genotype prediction based on F-scores from univariate feature
selection. Higher scores indicate greater discriminative power for distinguishing between

genotypes.
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Feature Importance from Random Forest Model
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Figure 3: Feature importance derived from the Random Forest model, reflecting the contribution
of each parameter to classification performance in the context of other features.

mean and standard deviation of their
4.4 Machine learning model performance metrics across the five
performance folds.
Table 3 provides a comprehensive
assessment of the models, reporting the

Table 3: Performance accuracy and macro-averaged evaluation metrics of the models

Model Accuracy Precision  Recall F1-
Score

Random forest  0.9091+ 0.6611 + 0.7111 + 0.6825 +

0.0575 0.1698 0.1507 0.1606
Support vector  0.9091 +  0.6528 + 0.7111 + 0.6781 +
machine 0.0575 0.1757 0.1507 0.1643
Neural Network 0.8909 £  0.6556 0.6889 + 0.6698 +
(Multi-Layered  0.0680 0.1727 0.1633 0.1675
Perceptron)

1. SS detection — All three classifiers

The following are key observations in achieved 100 % sensitivity for the SS
the analysis of the performance of the class (recall=1.0), confirming that
trained models. haemorheological _signatures of sickle
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cell anemia are highly discriminative, in biomedical datasets.
agreement with Ekong et al. (2023).

2. AS (sickle-cell trait) mis-classification
— Every AS sample was predicted as
AA, resulting in 0% recall for the AS
class. This mirrors the limitation
reported by  Shresthaetal. (2024),
where the low prevalence of trait
samples hampers model learning.

3. AA detection — Both RF and SVM
correctly classified > 94 % of AA cases,
with only isolated mis-predictions
(Figure 4-6).

The aggregate confusion matrix for each model
(Figures 4-6) provides deeper insights into
classification  patterns  across  different
genotypes.

Statistical comparison (paired z-test, df=4)
revealed that the Random Forest outperformed
the Neural Network (p<0.001), while the
difference between RF and SVM was not
statistically significant (p =0.07). These results
are consistent with Petrovi¢ etal. (2020), who
demonstrated that ensemble-tree methods often
surpass deep-learning models on small, tabular

Random Forest

30
A S 15 1 0
25
- 20
|
; AL A 4 1] 0
E - 15
- 10
S5 - 0 0 "
T T _— ﬂ
A A5 o]
Predicted labsl

Figure 4: Aggregate confusion matrix for the random forest model, showing the
distribution of true and predicted genotypes. The model correctly classified all SS and AA
samples but misclassified an AA sample as AS.
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Support Vector Machine
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Figure 5: Aggregate confusion matrix for the SVM model. Similar to Random Forest, SVM
correctly identified all SS, however failed to correctly classify the AS samples

Meural Netwaork
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Figure 6: Aggregate confusion matrix for the Neural Network model. This model correctly
classified all SS samples but showed lower accuracy for AA samples and failed to correctly identify
the AS sample.
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Analysis of the confusion matrices reveals a
critical and consistent pattern across all three
models:

1. Excellent SS Detection: All models
correctly identified nearly all sickle cell
anemia (SS) cases, demonstrating very
high sensitivity for the most severe
genotype.

2. Failure to Detect AS: All four sickle
cell trait (AS) cases were misclassified
as normal (AA) by every model. This
0% recall for the AS class is a major
limitation of this work.

3. Good AA Detection: The models
performed well in identifying normal
(AA) individuals, with only minor
misclassifications.

This robust validation confirms that while the
models are effective at separating SS patients
from others, they completely failed to
distinguish the AS trait. This is a direct
consequence of the small number of AS samples
(N=4) in the dataset, from which the models
could not learn a discriminative pattern.

4.5 Comparison with the existing literature

Table 4: Comparison of current work with the existing literature

Study Data type Best classifier Overall accuracy
Alzubaidi et al. (2020) |Microscopy images CNN-SVM hybrid 99.54 %

de Haan et al. (2020) Smartphone images  |DL (ResNet) 98.00 %

Ekong et al. (2023 Clinical labs Bayesian network 99.00%

Current work Haemorheology labs |RF/SVM 90.9 %

While image-based deep learning pipelines
achieve higher accuracies, they require costly
imaging hardware and extensive preprocessing.
Our approach leverages routine haemorheological
tests that are inexpensive, rapid, and already part of
standard care in low-resource settings, fulfilling
the “affordable screening” niche highlighted by
Long & Bai (2024). The modest drop in overall
accuracy (=9 %) is therefore an acceptable
trade-off given the resource constraints.
However, the limitation of this research can be
summarized and discussed as follows:

Class imbalance: Only four AS participants
were available, limiting the model’s ability to

learn trait-specific patterns.

1. Sample size: n=154 is small for robust
ML; cross-validation mitigates variance
but cannot replace external validation.

2. Single centre data: All measurements
originated from one Nigerian hospital,
possibly restricting generalisability to
other ethnic or geographic populations.

e Future work should prioritize multicentre data
collection (>300 participants) and feature
enrichment (e.g., reticulocyte count, HbF
level) to strengthen AS discrimination.
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5.0 CONCLUSION

This study demonstrates the potential of
machine learning algorithms, particularly
random forest and support vector machine,
for determining haemoglobin genotype
from haemorheological parameters with
high accuracy. The research findings
suggest that ML leveraging routine lab
parameters is a promising screening tool for
sickle cell disease, but is not yet viable for
comprehensive genotype classification due to
challenges with small dataset size and class
imbalance. Future works need to focus on
acquiring larger, more balanced datasets to
improve the detection of the AS trait. This
study successfully demonstrated the
potential of machine learning, specifically
Random Forest and Support Vector
Machine algorithms, to accurately classify
sickle cell genotypes (AA, AS, SS) using a
minimal set of routinely measured
haemorheological parameters from a
Nigerian cohort, achieving a peak accuracy
of 90.9% + 5.8%. The analysis
conclusively identifies Packed Cell
Volume (PCV) and Plasma Viscosity (PV)
as the most critical features for this
classification. However, the study also
precisely identifies a significant limitation:
the models consistently fail to reliably
distinguish the Sickle Cell Trait (AS) from
the normal (AA) genotype, a finding
attributed to the subtle haemorheological
differences in AS carriers and the inherent
class imbalance in the dataset. Therefore,
while this ML approach is a highly
effective and cost-efficient screening tool
for the severe Sickle Cell Anemia (SS)
phenotype in resource-limited settings, it is
not yet a standalone diagnostic tool for
comprehensive genotype classification.
Future research must prioritize the
acquisition of larger, balanced datasets and
the integration of more sophisticated

trait.

In summary, Ileveraging inexpensive
haemorheological measurements together
with  interpretable machine learning
algorithms offers a feasible pathway toward
low-cost SCD screening in resource-limited
environments, provided that future studies
address the current data-size and
class-imbalance constraints.

Declaration of Competing Interest

No competing interests in the planning, conduct,

and execution of the study.
Acknowledgments

We acknowledge the support from

the
Haematological Unit of the Department of

Medical laboratory Science of the Federal

Medical Centre, Owo, Ondo state, Nigeria.

REFERENCES

Adigwe, O. P,,Onaybayba G., Onoja S.0.(2023).

Impact of sickle cell disease on affected

Individuals in Nigeria: A critical

review doi: 10.2147/1JGM.S410015

Alapan, Y., Fraiwan, A., Kucukal, E., Hasan,
M. N., Ung, R., Kim, M., Odame, 1.,

Little, J. A., &
(2016). Emerging

Gurkan, U. A.
point-of-care

technologies for sickle cell disease

screening

and  monitoring.

Expert Review of Medical Devices,

13(12), 1073-1093.  h ttps://

doi.org/10.1080/17434440.2016.12540

38

Alzubaidi, L., Fadhel, M. A., Al-Shamma, O.,
Zhang, J., & Duan, Y. (2020). Deep

learning models for
classification of red blood cells

n

microscopy images to aid in sickle cell

featur@ engineering to §nhance the anaemia diagnosis.
detection of the clinically important AS
Academy Journal of Science and Engineering 19(5)2025 Page |82

OOk -

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)


https://doi.org/10.2147/IJGM.S410015

Exploratory Evaluation Ofues

Rahman Abiodun Olalekan....

Electronics, 9(3), 427.
https://doi.org/10.3390/electronics9030
427

Arishi, W. A., Alhadrami, H. A., & Zourob, M.

(2021). Techniques for the detection of
sickle cell disease: A  review.
Micromachines, 12(5), 519.
https://doi.org/10.3390/mi12050519

Cardoso, V. J. A., Moreira, R., Mari, J. F., &

Chen,

Moreira, L. F. R. (2023). Improving

sickle cell disease

classification: a fusion of
conventional classifiers, segmented
images and convolutional

neural networks. Encontro Nacional de
Inteligéncia Artificial e

Computacional (ENIAC).
https://doi.org/10.5753/eniac.2023.234
076

C. X., Funkenbusch, G. T., &
Wax, A. (2023). Biophysical
profiling  of sickle cell
disease using
holographic cytometry and deep
learning. International Journal

of Molecular  Sciences,
24(15), 11885.

https://doi.org/10.3390/i
jms241511885

Darrin, M., Samudre, A., Sahun, M., Atwell,

S., Badens, C., Charrier, A., Helfer, E.,
Viallat, A., Cohen-Addad, V. &
Giffard-Roisin, S. (2023).
Classification of red cell dynamics
with  convolutional and recurrent
neural networks: a sickle cell disease
case study. Scientific Reports, 13(1),
745.  https://doi.org/10.1038/s41598-
023-27718-w

de Haan, K., Koydemir, H. C., Rivenson,

Y., Tseng, D., Van Dyne, E., Bakic,

Dipto,

L., Karinca, D., Liang, K.,
Ilango, M., Gumustekin, E., & Ozcan,
A. (2020). Automated screening of

sickle cells using a
smartphone-based microscope and
deep learning. npj Digital

Medicine, 3, 76.
https://doi.org/10.1038/s41746-020-
0282-y

S. M., Reza, M. T., Mim, N. T., Ksibi,
A., Alsenan, S., Uddin, J., & Samad, M.
A. (2024). An  analysis  of
decipherable red blood cell
abnormality detection under

federated environment
leveraging XAI incorporated deep
learning. Scientific Reports, 14,
25664.

https://doi.org/10.1038/s41598
-024-76359-0

Ekong, B., Ekong, O., Silas, A., Edet, A. E., &

William, B. (2023). Machine learning
approach for classification of
sickle cell anaemia in teenagers based on
bayesian network. Journal  of

Information Systems
Informatics,
5(4).https://doi.org/10.51519/journalisi.
v5i4.629

and

Elsabagh, A. A., Elhadary, M., Elsayed, B.,

Elshoebi, A. M., Ferih, K., Kaddoura,
R., Alkindi, S., Alshurafa, A,
Alrasheed, M., Alzayed, A., Al-
Abdulmalek, A., Altoaq, J. A., &

Yassin, M.  (2023). Artificial
intelligence in sickle disease. Blood
Reviews, 61,101102.

Goswami, N. G., Goswami, A., Sampathila, N.,

Muralidhar, G. B., Chadaga, K., &
Belurkar,

S. (2024). Detection of sickle cell disease

using deep neural networks and

OOk -

Academy Journal of Science and Engineering 19(5)2025

Page |83

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)


https://doi.org/10.3390/electronics9030427
https://doi.org/10.3390/electronics9030427
https://doi.org/10.3390/mi12050519
https://doi.org/10.5753/eniac.2023.234076
https://doi.org/10.5753/eniac.2023.234076
https://doi.org/10.3390/ijms241511885
https://doi.org/10.3390/ijms241511885
https://doi.org/10.1038/s41598-023-27718-w
https://doi.org/10.1038/s41598-023-27718-w
https://doi.org/10.1038/s41746-020-0282-y
https://doi.org/10.1038/s41746-020-0282-y
https://doi.org/10.1038/s41598-024-76359-0
https://doi.org/10.1038/s41598-024-76359-0
https://doi.org/10.51519/journalisi.v5i4.629
https://doi.org/10.51519/journalisi.v5i4.629

Exploratory Evaluation Ofues

Rahman Abiodun Olalekan....

explainable
artificial intelligence. Journal of
Intelligent Systems, 33(1).

https://doi.org/10.1515/
jisys-2023-0179

Goswami, N. G., Sampathila, N., Bairy, G. M.,
Goswami, A., Siddarama, D. D. B., &
Belurkar, S. (2024).
Explainable artificial intelligence and
deep learning methods for the detection

of sickle cell by capturing
the digital images of blood smears.
Information, 15(7), 403.

https://doi.org/10.3390/info150
70403

Jennifer, S. S., Shamim, M. H., Reza,
A. W., & Siddique, N. (2023).

Sickle cell disease

classification using
deep learning. Heliyon, 9(11),
€22203.

https://doi.org/10.1016/
j-heliyon.2023.e22203

Justin K., Lipo W., Jai R., & Tchoyoson L.
(2017). Deep learning applications in
medical image analysis. IEEE
Access.
https//doi.org/10.1109/ACCESS.2017.
2788044

Kawuma, S., Mabirizi, V., Kyarisima, A.,
Bamutura, D., Atwiine, B., Nanjebe, D.,
& Mukama,

A. O. (2023). Comparison of deep learning
techniques in detection of sickle cell
disease. Artificial — Intelligence
and Applications, 1(4), 228-235.

Long, Y., & Bai, W. (2024). Constructing a
novel clinical indicator model to
predict the occurrence of
thalassemia in pregnancy through

machine learning algorithm. Frontiers

in Hematology, 3.
https://doi.org/10.3389/frhem.2024.13
41225

Machado, T. F., Barros Neto, F. C., Gongalves,
M. S., Barbosa, C. G., & Barreto, M. E.
(2024). Exploring machine
learning algorithms in sickle cell disease
patient data: A systematic  review.

PLoS One, 19(11), e0313315.
https://doi.org/10.1371/journal.pone.03
13315

Okandeji, A. A., Odeyinka, O. F., Sogbesan, A.
A., & Ogunye, N. O. (2022 ). A
comparative analysis of haemoglobin

variants using machine learning
algorithms.  Nigerian  Journal  of

Technology (NIDOTECH),
41(4), 789-796.

https://dx.doi.org/10.4314/njt.v41i4.16

Okon, E. S., Michael, K. O., Francis, R. E., &
Efiong, A. J. (2024 ). Application of Al
algorithms for the prediction of
the likelithood of sickle cell crises.
Scholars Journal of ~ Engineering and
Technology, 12(1), 1-10.
https://doi.org/10.36347/sjet.2024.v12i0

1.001

Ouchtar, Y. (2023 ). Application of machine
learning methods for the detection of
acute chest  syndrome in patients with
sickle cell disease [Doctoral dissertation,
Université Paris- Saclay]. HAL
Open Science.
https://theses.hal.science/tel-04503252/

Petrovi¢, N., Moya-Alcover, G., Jaume-i-Cap0,
A., & Gonzalez-Hidalgo, M. (2020).
Sickle- cell  disease diagnosis support
selecting the most appropriate machine
learning method: Towards a
general and interpretable approach for

OOk -

Academy Journal of Science and Engineering 19(5)2025

Page |84

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)


https://doi.org/10.1515/
https://doi.org/10.3390/info15070403
https://doi.org/10.3390/info15070403
https://doi.org/10.1016/
https://doi.org/10.3389/frhem.2024.1341225
https://doi.org/10.3389/frhem.2024.1341225
https://doi.org/10.1371/journal.pone.0313315
https://doi.org/10.1371/journal.pone.0313315
https://dx.doi.org/10.4314/njt.v41i4.16
https://doi.org/10.36347/sjet.2024.v12i01.001
https://doi.org/10.36347/sjet.2024.v12i01.001
https://theses.hal.science/tel-04503252/

Exploratory Evaluation Ofues Rahman Abiodun Olalekan....

cell morphology analysis from S., Shrestha, R., Shrestha,
microscopy images. Computers S., Shrestha, S., Shrestha, S., Shrestha,
in Biology and Medicine, 126, 104027. S., Shrestha, S., Shrestha, S.,.. &

Karki, S. (2023). Low-Cost
automated microscopy and
morphology-based machine learning

classification of sickle cell
disease and [-Thalassemia. Blood,
142(Supplement 1), 2487.

ROY, S. K., Gupta, S., & Jain, P. (2024) httpSI//dOi.OI‘g/lO.l 182/blood-
Machine learning-based disease 2023-185808
severity prediction in sickle cell

Quinn, C. T. (2016). Clinical severity in sickle
cell disease: The challenges of
definition and prognostication.

Experimental Biology and Medicine,
241(7), 679-688.

Ucucu, H., Gokmen, A., & Ugucu, M.

patients: Spectroscopic insights. . .

HEALTHINF 2024 - 17th International (2022). Machine learning models
Conference on Health can predict the presence

Informatics 123438 of wvariants in hemoglobin:

artificial neural network-based

https://www.scitepress.org/ ..
recognition of human

Papers/2024/123438/123438.pd

£ hemoglobin variants by HPLC.
The  Turkish  Journal  of
Sadafi, A., Bordukova, M., Makhro, A., B10chem1§try, 47(6), 66,5_672'
Navab, N., Bogdanova, A., & Marr, C. https://doi.org/10.1515/tjb-2022-
(2023). RedTell:  An Al tool for 0093

interpretable analysis of red blood cell

morphology. Frontiers in p Ussher, F. A., Okyere, A. A., & Appiah,

M. A. (2025 ). Identification of

hysiology, 14. . .
https://doi.org/10.3389/fphys.2023.105 hematological biomarkers and
8720 assessment of machine learning

models for sickle cell anemia
Shrestha, P., Lohse, H., Bhat, C., McCartney, SCVCI:lty )
H., Alzaki, A., Sahu, N., Kumar, P., Le, classification. Journal of
H.,Praka, M., Amid, A., Onell, R., Au, Sickle ~ Cell  Disease,  2(1),
N., Merkeley, H., Kapoor, V., Pande, y0af020. _ ,
R., & Stoeber, B. (2024). https://doi.org/10.1093/js

Morphology-based cd/y0af020

classification of sickle cell disease and
B- t halassemia  using a
low-cost automated microscope

Vicent, L., Martinez-Pérez, M. E., Sossa, H., &
Gutiérrez-Hernandez, D. A. (2022).

and machine learning. medRxiv. Detecqon. of ) sickle cell
https://doi.org/10.1101/2024.09 ahactnia in overlapping red bl.OOd cells

2124314128 using canny edge detection and
double threshold machine

Shrestha, P., Lohsiriwat, H., Maydan, M., learning techniques. Diagnostics, 12(5)

Niroula, A., Karki, N. R., Shrestha, S.,
Paudel, S., Shrestha, S., Adhikari,
S., Shrestha, A., Karki, D. B., Shrestha

@ ® Academy Journal of Science and Engineering 19(5)2025 Page |85

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)

Zhu, Z., Harowicz, M. R., Zhang, J., Saha, A.,
Grimm, L. J., Hwang, E. S. &



http://www.scitepress.org/
https://doi.org/10.3389/fphys.2023.1058720
https://doi.org/10.3389/fphys.2023.1058720
https://doi.org/10.1182/blood-2023-185808
https://doi.org/10.1182/blood-2023-185808
https://doi.org/10.1515/tjb-2022-0093
https://doi.org/10.1515/tjb-2022-0093
https://doi.org/10.1093/jscd/yoaf020
https://doi.org/10.1093/jscd/yoaf020

Exploratory Evaluation Of s Rahman Abiodun Olalekan....

Mazurowski, M.
A. (2023). Deep learning applications in
medical image analysis. Nature

Reviews Methods
Primers, 3, 5.
https://doi.org/10.1038/s43586-022-
00194-8

I‘m Academy Journal of Science and Engineering 19(5)2025 Page |86
BY

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)


https://doi.org/10.1038/s43586-022-00194-8
https://doi.org/10.1038/s43586-022-00194-8

	1.0 INTRODUCTION
	2.0 LITERATURE REVIEW
	2.1 Haemorheological Parameters in Sickle Cell Disease
	2.2 Challenges and Opportunities in ML-based Sickle Cell Detection

	This research evaluates the efficacy of three ML algorithms: random forest, support vector machine, and neural network in the detection of SCD genotype leveraging a well-annotated haemorheological dataset, addressing difficulty in choice of ML model a...
	3.0 MATERIALS AND METHODS
	4.0 RESULTS AND DISCUSSIONS

