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Abstract 

Sickle cell disease (SCD) patients have characteristic abnormal haemoglobins that cause red blood cells to 
become sickle-like in shape, leading to various complications. Early detection is desirous, yet existing 
diagnostic methods require high cost and deep learning curves. This study evaluated the potential of three 
machine learning (ML) algorithms—Random Forest, Support Vector Machine (SVM), and a Neural 
Network—in detecting sickle cell genotypes (SS, AS, AA) from a Nigerian dataset of 54 participants using 
haemorheological parameters. We employed a stratified 5-fold cross-validation methodology to ensure reliable 
performance evaluation. The Random Forest and SVM models achieved the highest mean accuracy at 90.9% 
± 5.8%. Feature importance analysis confirmed Packed Cell Volume (PCV) as the most discriminative 
parameter, followed by Plasma Viscosity (PV) and Age. While all models demonstrated high sensitivity in 
identifying sickle cell anaemia (SS), they consistently failed to correctly classify the sickle cell trait (AS), a 
critical limitation highlighted by the validation. Our findings suggest that ML leveraging routine lab 
parameters is a promising screening tool for sickle cell disease, but is not yet viable for comprehensive 
genotype classification due to challenges with small dataset size and class imbalance. Future works need to 
focus on acquiring larger, more balanced datasets to improve the detection of the AS trait. 
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1.0 INTRODUCTION 

Sickle cell disease (SCD) is among known 
blood disorders characterized by the presence 
of abnormal hemoglobin S (HbSS), which 
causes red blood cells to “sickle” in shape for a 
life span of about 20 days. HbSS is the most 
common variant of SCD genotypes and affects 
millions of people worldwide, with the highest 
prevalence in sub-Saharan Africa, the 
Mediterranean region, the Middle East, and 
parts of India. Clinical manifestations of SCD 
are diverse and potentially severe, including 
vaso-occlusive crises, acute chest syndrome, 
stroke, and organ damage, resulting in 
significant death rates and reduced life 
expectancy (Elsabagh et al., 2023). 

The genetic basis of SCD is rooted in the point 
mutations in the beta-globin gene (HBB), with 
homozygosity for the HbS allele (HbSS) 
resulting in sickle cell anaemia, the most 
common and severe form of SCD. 
Heterozygosity for HbS (HbAS), known as 
sickle cell trait, is generally considered a 
benign carrier state, although it can be 
associated with certain health risks under 
extreme conditions. Other genotypes, such as 
HbSC and HbS-beta thalassemia, represent 
compound heterozygous states with varying 
clinical severity (Arishi et al., 2021). 

Early detection of SCD is crucial for 
implementing preventive measures and 
appropriate management strategies to reduce 
complications and improve quality of life. 
Traditional diagnostic approaches for SCD 
include complete blood cell count, hemoglobin 
electrophoresis, high-performance liquid 
chromatography (HPLC), isoelectric focusing, 
solubilty sickling test, and molecular genetic 
testing (Arishi et al., 2021; Elsabagh et al., 
2023). While these techniques offer accurate 
genotype determination, they often require 
specialized equipment, trained personnel, and 
substantial resources, limiting their 
accessibility in resource-constrained settings 

where the burden of SCD is highest (Alapan et 
al., 2016; Arishi et al., 2021; Elsabagh et al., 
2023). 

Recent technological developments have raised 
interest in leveraging machine learning 
techniques to enhance the detection and 
management of SCD. Machine learning, a 
subset of artificial intelligence, involves the 
design of algorithms that can learn patterns from 
data and make predictions or decisions without 
a need for explicit instructions from human 
experts. These initiatives have shown promise in 
various medical applications, including disease 
diagnosis, prognosis prediction, and treatment 
optimization (Machado et al., 2024). 

Application of ML techniques to SCD detection 
enriches healthcare system in various ways. ML 
algorithms can identify inherent complex, non-
linear relationships between laboratory 
parameters and disease states which might not 
be apparent through traditional approaches. 
Likewise, they are capable of integrating 
multiple parameters to improve diagnostic 
accuracy, potentially reducing the need for 
specialized tests. And lastly, ML models 
developed though domain data can be deployed 
on portable devices or integrated into existing 
healthcare systems, enhancing accessibility and 
scalability of screening programs (Goswami et 
al., 2024). 

Haemorheological parameters, which describe 
the flow properties of blood and its components, 
are particularly related to SCD 
pathophysiology. The sickling of red blood cells 
in SCD foster alterations in blood viscosity, cell 
deformability, and other rheological properties 
which can be measured through various 
clinical/laboratory techniques. These easily-
measured parameters might serve as valuable 
inputs for ML algorithms aimed at detecting 
SCD or predicting Red Blood Cell (RBC) 
motions as a marker of complications related to 
SCD (Darrin et al., 2023). 
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Challenges faced in the application of ML in 
SCD detection include the need for large, 
diverse, and well-annotated datasets for 
algorithm training and validation; selection of 
appropriate features or parameters that provide 
meaningful discriminative power; 
interpretability of ML models to facilitate 
clinical adoption and trust; and the 
generalizability of algorithms across different 
populations and healthcare settings (Zhu et al., 
2023). 

Despite the growing body of literature on ML 
for SCD, a significant gap remains in the 
application of these models to the specific 
context of genotype classification using readily 
available haemorheological parameters from a 
high-prevalence region like Nigeria. Previous 
studies have primarily focused on image-based 
classification or prediction of clinical 
outcomes, often relying on complex data 
modalities that are not routinely accessible in 
resource-limited settings (de Haan et al, 2020; 
Alzubaidi et al, 2020). Nigerian population 
harbours the high burden of SCD (Adigwe et 
al, 2023). Therefore, the actual research 
question this study seeks to address is: To what 
extent can a model trained on simple, routinely 
measured haemorheological parameters from a 
Nigerian cohort accurately classify the three 
major sickle cell genotypes (AA, AS, SS), and 
what are the specific limitations of this 
approach, particularly concerning the clinically 
challenging Sickle Cell Trait (AS)? This work 
provides a crucial justification for a cost-
effective, non-invasive screening tool that can 
be integrated into existing primary healthcare 
infrastructure in endemic regions, thereby 
offering a practical and scalable solution to 
enhance early detection and management of 
SCD (Ekong et al, 2023; Long et al, 2024) 

The research approach some of the stated 
challenges by investigating the efficacy of 
different ML algorithms in determining 
haemoglobin genotype from well-annotated 

hematological and haemorheological 
parameters to inform sickle cell detection. 
Specifically, we compared the performance of 
Random Forest, Support Vector Machine 
(SVM), and Neural Network algorithms in 
classifying individuals into different genotype 
categories (SS, AS, and AA) leveraging on 
parameters such as packed cell volume (PCV), 
whole blood viscosity (WBV), plasma 
viscosity (PV), platelet count (PLT), and white 
blood cell count (WBC). 

Findings from this study could contribute to the 
development of more accessible and cost-
effective screening processes for SCD, 
particularly in underserved settings. By 
leveraging routine laboratory parameters and 
ML techniques, we aim to enhance the early 
detection of SCD and facilitate appropriate 
management, potentially improving outcomes 
for affected individuals. 
 
2.0 LITERATURE REVIEW  

Image-based techniques have been particularly 
prominent in SCD detection research. 
Alzubaidi et al. (2020) developed lightweight 
deep learning(DL) models for classifying 
erythrocytes into normal, sickle cells, and other 
blood content categories. This approach 
achieved 99.54% accuracy using their model 
alone and 99.98% accuracy when combined 
with a multi-class support vector 
machine(SVM) classifier. Likewise, de Haan 
et al. (2020) designed a DL framework for 
automated screening of sickle cells using a 
smartphone-based microscope, achieving 
approximately 98% accuracy with an area-
under-the-curve(ROC) score of 0.998 in tests 
involving 96 unique patients. 

The challenge of detecting overlapping red 
blood cells, a common occurrence in clinical 
samples, was addressed by Vicent et al. (2022). 
They developed an algorithm using canny edge 
detection and double threshold machine 
learning techniques, with an achievement of 
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98.18% overall accuracy, 98.29% sensitivity, 
and 97.98% specificity when tested on 1,000 
digital images at various magnification scales. 

More recently, Goswami et al. (2024) 
proposed a semi-automated system for 
capturing digital images of blood smears to 
detect SCD, combining hardware for image 
capture with deep learning algorithms for 
classification. The approach achieved an 
average accuracy of around 97% using 
various deep learning models including 
Darknet-19, ResNet50, and GoogleNet, 
demonstrating the potential of integrated 
approaches for SCD detection. 

Through comparative studies, researchers 
have provided insights into the relative 
performance of different ML techniques for 
SCD detection. Kawuma et al. (2023) 
evaluated several pre-trained deep learning 
models including VGG16, VGG19, ResNet, 
Inception V3, and ResNet50 using the same 
dataset, and found out that Inception V3 
yielded the highest accuracy at 97.3%, 
followed by VGG19 at 97.0%. This type of 
systematic comparison is valuable for 
identifying the most effective algorithms for 
specific applications in SCD detection. 
Beyond image-based classification, ML has 
been applied to other data modalities for SCD 
detection and management. The integration of 
ML with novel imaging modalities has also 
shown great promise. Chen et al. (2023) 
introduced holographic cytometry combined 
with deep learning for comprehensive 
morphological profiling of red blood cells in 
SCD, achieving an average accuracy of 
93.17% across multiple samples, with four out 
of four normal subject samples showing 
above 94% accuracy. This approach 
highlights the value of advanced imaging 
techniques coupled with ML for detailed 
cellular analysis. 

Recent developments in the application of AI 
in healthcare have also focused on enhancing 

the interpretability and privacy aspects of ML 
for disease detection. In the detection of SCD, 
for instance, Dipto et al. (2024) proposed a 
federated learning framework for red blood cell 
abnormality detection, achieving 94-95% 
accuracy while maintaining data confidentiality. 
They employed GradCam-driven Explainable 
AI techniques to verify classification results, 
making the model's decision-making process 
more transparent and trustworthy. 

 
2.1 Haemorheological 
Parameters in Sickle Cell 
Disease 

Haemorheological parameters are flow 
properties of blood and its components. They 
play a crucial role in the pathophysiology of 
SCD and have been investigated as potential 
biomarkers for disease detection and severity 
assessment. The sickling of red blood cells in 
SCD leads to changes in blood viscosity, cell 
deformability, and other rheological properties 
that can be measured through various laboratory 
techniques. 

Whole blood viscosity (WBV) and plasma 
viscosity (PV) are fundamental 
haemorheological parameters that represent the 
resistance of blood to flow. In SCD, these 
parameters are often altered due to the presence 
of sickle-shaped red blood cells and deviated 
plasma composition. Petrović et al. (2020) 
highlighted the importance of cell morphology 
analysis from microscopy images for SCD 
diagnosis, emphasizing how morphological 
changes in red blood cells affect blood rheology 
and can be captured through computational 
approaches. 

Packed cell volume (PCV), also known as 
haematocrit, represents the volume percentage 
of red blood cells in blood and is typically 
reduced in SCD due to chronic haemolysis. 
This parameter, along with other red blood cell 
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indices, has been identified as a key predictor 
in ML models for SCD detection. Roy et al. 
(2024) employed ML techniques to analyze 
longitudinal blood pathology data for 
predicting the onset and severity of co- 
morbidities in SCD patients, finding that 
hemoglobin dynamics, including hemoglobin 
levels and red blood cell indices, were crucial 
indicators. 

Platelet count (PLT) and white blood cell count 
(WBC) are additional haemorheological 
parameters that may be altered in SCD due to 
the chronic inflammatory state and increased 
cell turnover. These parameters have been 
incorporated into various ML models for SCD 
detection and severity prediction. Uçucu et al. 
(2022) demonstrated that ML models could 
predict hemoglobin variants based on red blood 
cell indices, hemoglobin values, and retention 
time values, with promising performance in 
distinguishing between sickle cell and other 
hemoglobin variants. 

The dynamic behavior of red blood cells 
under flow conditions provides another 
dimension of haemorheological assessment 
relevant to SCD. Ekong et al. (2023) 
employed a Bayesian network in classifying 
sickle cell anaemia in teenagers based on 
medical parameters including age, platelet 
count, mean corpuscular haemoglobin 
concentration, red blood cell count, and 
packed cell volume, achieving a 99% 
accuracy. This demonstrates an earlier 
attempt to investigate the potential of ML to 
leverage routine clinical and laboratory data 
for SCD classification.  

Ussher et al. (2025) focuses on identifying 
hematological biomarkers and assessing ML 
models for sickle cell anemia severity 
classification. It reinforces the use of routine 
hematological parameters as inputs for ML 
models, moving beyond simple diagnosis to 
severity prediction.  
A highly relevant study from Nigeria by Okandeji 

et al. (2022) uses ML to categorize haemoglobin 
variants (including AA, AS, SS) using a large 
dataset of 752 complete blood count (CBC) 
laboratory analyses. It directly supports the 
feasibility of our approach in a Nigerian context, 
demonstrating the importance of local context 
inclusion 

Darrin et al. (2023) developed a two-stage ML 
pipeline for automatically classifying red 
blood cell motions in videos to monitor the 
clinical status of SCD patients. Their approach 
achieved 97% accuracy in distinguishing 
between tank-treading motion (characteristic 
of highly deformable RBCs) and flipping 
motion (characteristic of poorly deformable 
RBCs), demonstrating how dynamic 
haemorheological parameters can inform SCD 
monitoring. 

Recent advances in imaging and analysis 
techniques have expanded the range of 
haemorheological parameters available for 
ML-based SCD detection. Sadafi et al. (2023) 
introduced RedTell, an AI tool for interpretable 
analysis of red blood cell morphology that 
extracts 135 hand-crafted morphological 
features from brightfield and fluorescence 
channels. This comprehensive feature 
extraction approach enhances the ability to 
capture subtle haemorheological alterations 
associated with SCD. 
 
2.2 Challenges and Opportunities in 
ML-based Sickle Cell Detection 

Despite the promising results of ML 
applications in SCD detection, several 
challenges remain to be addressed. One 
significant challenge is the limited availability 
of large, diverse, and well-annotated datasets 
for algorithm training and validation (Ouchtar, 
2023; Okon et al., 2024). Shrestha et al. (2023) 
addressed this issue by creating an open-access 
dataset comprising over 300,000 images with 
1.5 trillion segmented cells from 138 
individuals in Canada and Nepal, including 
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those with sickle and/or β-thalassemia 
mutations. Such comprehensive datasets are 
invaluable for advancing research in this field. 

Another challenge is the variability in clinical 
and laboratory manifestations of SCD, 
particularly in heterozygous conditions such as 
sickle cell trait. Shrestha et al. (2024) reported 
lower performance for distinguishing between 
sickle cell trait and normal hemoglobin using 
morphology-based classification, highlighting 
the need for more sophisticated techniques or 
additional biomarkers to improve detection of 
heterozygous conditions. 

The interpretability of ML models represents 
both a challenge and an opportunity in SCD 
detection. Complex models such as deep neural 
networks may achieve high accuracy but often 
function as "black boxes," limiting clinical 
trust and adoption. Jennifer et al. (2023) 
addressed this issue by incorporating 
explainable AI techniques in their deep 
learning approach for SCD classification, 
enhancing transparency and reliability of the 
model's decision-making process. 

Resource constraints in settings with high SCD 
prevalence present another significant 
challenge. Long and Bai (2024) developed a 
ML model to predict thalassemia using routine 
blood parameters, addressing the economic and 
time costs associated with genetic testing. 
Their approach achieved an area under the 
receiver operating characteristic curve of 0.97, 
demonstrating the potential of ML to provide 
cost-effective screening solutions in resource-
limited settings. 

Integration of ML with point-of-care 
technologies represents a promising 
opportunity for expanding access to SCD 
screening. Cardoso et al. (2023) proposed a 
fusion approach combining conventional 
classifiers, segmented images, and 
convolutional neural networks for SCD 

classification, achieving 99.8% accuracy. 
This type of integrated approach could be 
adapted for portable, low-cost devices 
suitable for use in diverse healthcare contexts. 

This research evaluates the efficacy of three 
ML algorithms: random forest, support vector 
machine, and neural network in the detection 
of SCD genotype leveraging a well-annotated 
haemorheological dataset, addressing 
difficulty in choice of ML model and 
unavailability of local datasets. 

  
3.0 MATERIALS AND METHODS  

Dataset for this study was obtained from a 
tertiary healthcare facility, Haematology Unit of 
the Medical Laboratory Department, Federal 
Medical Centre, Owo, Ondo state, Nigeria. 
Ethical approval was obtained from the 
Research Ethics Committees of the Centre. 
Informed consents of the subjects were obtained 
before enrollment after due explanation of the 
aims and procedures of the research, and the 
participants were enrolled consecutively. 
Privacy and confidentiality of the entire subjects 
were guaranteed by removing all elements of 
identification from the data to ensure anonymity 
of the participants. A total of fifty-four(54) 
participants with known haemoglobin 
genotypes were recruited, including thirty-
four(34) individuals with sickle cell anaemia 
(SS), sixteen(16) with normal haemoglobin 
(AA), and four(4) with sickle cell trait (AS). 
Participants were recruited during routine 
clinical visits, and informed consent was 
obtained from all individuals or their legal 
guardians. The study protocol was approved by 
the institutional ethics committee. Inclusion 
criteria were: (1) confirmed haemoglobin 
genotype by haemoglobin electrophoresis or 
high-performance liquid chromatography, (2) 
age between 5 and 35 years, and (3) absence of 
blood transfusion in the preceding three months. 
Exclusion criteria included: (1) concurrent acute 
illness or crisis, (2) use of hydroxyurea or other 
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disease-therapies, and (3) presence of other 
haemoglobinopathies or haematological 
conditions. 

3.1 Sample Collection and 
Haemorheological Assessment 

We collected blood samples from all 
participants following standard venipuncture 
techniques. Values of the haemorheological 
parameters were obtained using established 
laboratory methods. Microhaematocrit method 
was used to obtain the Packed cell volume 
(PCV) with samples centrifuged at 12,000 rpm 
for 5 minutes. Whole blood viscosity (WBV) 
and plasma viscosity (PV) were measured 
using a rotational viscometer (Brookfield DV-
II+, Brookfield Engineering Laboratories, 
USA) at a shear rate of 230 s⁻¹ and temperature 
of 37°C. We also determined the Platelet count 
(PLT) and white blood cell count (WBC) using 
an automated haematology analyzer (Sysmex 
XN-1000, Sysmex Corporation, Japan). All 
measurements were performed in duplicate, 
and the average values were used for analysis. 
Quality control procedures were implemented 
throughout the data collection process, 
including regular calibration of instruments, 
use of standard reference materials, and 
blinding of laboratory personnel to participant 
genotype. 

3.2 Data Preprocessing and Feature 
Selection 

The dataset consisted of demographic 
information (age and sex) and 
haemorheological parameters: packed cell 
volume(PCV), whole blood viscosity(WBV), 
plasma volume(PV), platelet count(PLT), and 
white blood cell count(WBC) for each 
participant. Prior to model development, the 
data underwent several preprocessing steps. 
First, descriptive statistics were calculated for 

each parameter across genotype groups, and 
statistical comparisons were performed using 
one-way analysis of variance (ANOVA) with 
post-hoc Tukey tests. 

Then, correlation analysis was conducted to 
identify relationships between 
haemorheological parameters and the potential 
multi-collinearity issues. Pearson correlation 
coefficients were calculated for all pairs of 
continuous variables, and the results were 
visualized using a correlation matrix(figure 1). 

And lastly, feature selection was performed to 
identify the most informative parameters for 
genotype prediction. Univariate feature 
selection using F-scores was employed to rank 
individual parameters based on their 
discriminative power. Insightfully, feature 
importance was derived from the random forest 
model to assess the contribution of each 
parameter in a multivariate context. 

 
3.3 Machine Learning Model Development 
 
We implemented three machine learning 
algorithms and compared their performances in 
the SCD genotype prediction: random 
forest(RF), support vector machine(SVM), and 
neural network(NN). These algorithms were 
selected on consideration of their documented 
performances in medical classification tasks and 
their ability to handle different types of 
relationships in the data, most especially 
medical data known with non-linearity. Table 1 
below presents the specific configurations used 
for the three models implemented in the study. 
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Table 1: Models and specific feature configurations implemented 
S/N Model Features 
1 Random Forest Number of trees: 100 

Depth: 5 
Criterion: Gini Impurity 
 

2 Support Vector Machine Kernel: Radial Basis Function 
Regularization Parameter: 1.0 
Gamma: 0.2 

3 Neural Network (Multi Layered Perceptron) Hidden Layers: 2 (8, 4 neurons 
respectively) 
Activation Function: Rectified 
Linear Unit. 
Optimizer: Adam 
Learning rate: 0.001 

In response to the limited sample size and class 
imbalance in the dataset, we employed 
stratified k-fold cross-validation (k=5) to 
ensure robust evaluation of model 
performance. Model hyperparameters were 
optimized using grid search with cross- 
validation on the training set. 

3.4 Model Evaluation and Comparison 

Evaluation of the model performance 
employed the following metrics: accuracy, 
precision, recall, and F1-score. 

Accuracy: represents the proportion of 
correctly classified instances across all 
genotypes, 

Accuracy = correct classification/Total 
classification 

Precision (positive predictive value) indicates 
the proportion of positive predictions that are 
actualy positive,  

Precision = correctly classified actual 

positives/All classified as positives 

while recall (sensitivity) reflects the proportion 
of actual positives that are correctly identified, 

Recall = correctly classified actual 
positives/All actual positives  

The F1-score is the harmonic mean of precision 
and recall, providing a balanced measure of 
model performance. 

F1 = 2 x (precision x recall)/(precision + 
recall) 

Aggregate confusion matrices were generated 
for the models to visualize the pattern of correct 
and incorrect classifications across different 
genotypes. Statistical comparisons between 
models were performed using t-test for paired 
nominal data. All statistical analyses and 
machine learning implementations were 
conducted using Python 3.8 with scikit-learn 
0.24.2, TensorFlow 2.6.0, and other required 
libraries. Statistical significance was set at p < 
0.05 for all comparisons. 
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4.0 RESULTS AND DISCUSSIONS  4.1 Haematorheological Profile by Genotype 
 

Table 2: Haemorheological Parameters by Genotype (Mean ± SD) 
PARAMETER SS(N=34) AA(n=16) AS(n=4) p-value 

Age (years) 14.82 ± 6.41 
 

17.19 ± 7.65 
 

16.25 ± 7.23 
 

0.33 
 

PCV (%) 22.15 ± 5.84 37.41 ± 6.32 33.55 ± 3.78 <0.001* 

WBV 3.71 ± 0.58 4.52 ± 0.48 4.33 ± 0.31 <0.001* 
   PV  

1.98 ± 0.32 1.59 ± 0.12 1.68 ± 0.15 <0.001* 

PLT (×10⁹/L) 253.21 ± 83.42 183.75 ± 42.65 195.25 ± 38.73 
 

0.003* 

WBC (×10⁹/L) 6.42 ± 1.31 
 

5.11 ± 1.12 
 

5.28 ± 1.25 
 

0.001* 

 *Statistically significant difference (p < 0.05) 

Table 2: Descriptive statistics of 
haemorheological parameters by genotype 
(SS, AA, AS) and p-values of group 
comparisons.  

The results shown in table 2 are consistent with 
the well-documented pathophysiology of 
sickle cell disease (SCD). PCV is markedly 
reduced in SS patients, reflecting chronic 
haemolysis, while WBV is lower because 
“sickled” erythrocytes become less deformable 
(Elsabagh et al., 2023). The elevated PV in SS 
subjects mirrors increased plasma fibrinogen 
and other acute-phase reactants 
(Roy et al., 2024). The platelet and leukocyte 
elevations align with the inflammatory milieu 

described in pediatric SCD cohorts 
(Machado et al., 2024).  

4.2 Correlation Analysis 

A Pearson correlation matrix (Figure 1) 
confirmed strong positive links between PCV and 
age (r = 0.66, p < 0.001) and a moderate association 
between PV and fibrinogen (r = 0.45, p < 0.001), 
corroborating earlier observations that 
age-dependent haemoglobin changes influence 
rheology (Petrović et al., 2020). No 
multicollinearity ( |r| > 0.8) was detected, 
allowing all five haemorheological variables to 
be retained for modelling.  
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Figure 1: Pearson correlation matrix of the haemorheological parameters. The color intensity and 
numbers represent the strength and direction of correlations, with red indicating positive 
correlations and blue indicating negative correlations. 
 

4.3 Feature Importance Analysis 

As shown in Figures 2 and 3 respectively, both 
univariate F-score and Random-Forest 

Importance analyses converge on PCV as the 
dominant predictor, followed by PV and WBV. 
This mirrors the findings of Uçucu et al. (2022) who 
reported PCV as the top feature for 
hemoglobin-variant classification using routine labs.  
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Figure 2: Feature importance for genotype prediction based on F-scores from univariate feature 
selection. Higher scores indicate greater discriminative power for distinguishing between 
genotypes. 
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Figure 3: Feature importance derived from the Random Forest model, reflecting the contribution 
of each parameter to classification performance in the context of other features. 
 
4.4 Machine learning model 
performance 
Table 3 provides a comprehensive 
assessment of the models, reporting the 

mean and standard deviation of their 
performance metrics across the five 
folds.  
 

Table 3: Performance accuracy and macro-averaged evaluation metrics of the models 
 

Model Accuracy Precision  Recall F1-
Score 

Random forest 
 

0.9091 ± 
0.0575  
 

0.6611 ± 
0.1698  

0.7111 ± 
0.1507  

0.6825 ± 
0.1606  

Support vector 
machine 
 

0.9091 ± 
0.0575  

0.6528 ± 
0.1757  

0.7111 ± 
0.1507  

0.6781 ± 
0.1643  

Neural Network 
(Multi-Layered 
Perceptron) 

0.8909 ± 
0.0680  

0.6556 ± 
0.1727  

0.6889 ± 
0.1633  

0.6698 ± 
0.1675  

 
The following are key observations in 
the analysis of the performance of the 
trained models. 

1. SS detection – All three classifiers 
achieved 100 % sensitivity for the SS 
class (recall = 1.0), confirming that 
haemorheological signatures of sickle 
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cell anemia are highly discriminative, in 
agreement with Ekong et al. (2023).  

2. AS (sickle-cell trait) mis-classification 
– Every AS sample was predicted as 
AA, resulting in 0 % recall for the AS 
class. This mirrors the limitation 
reported by Shrestha et al. (2024), 
where the low prevalence of trait 
samples hampers model learning.  

3. AA detection – Both RF and SVM 
correctly classified > 94 % of AA cases, 
with only isolated mis-predictions 
(Figure 4-6).  

Statistical comparison (paired t-test, df = 4) 
revealed that the Random Forest outperformed 
the Neural Network (p < 0.001), while the 
difference between RF and SVM was not 
statistically significant (p = 0.07). These results 
are consistent with Petrović et al. (2020), who 
demonstrated that ensemble-tree methods often 
surpass deep-learning models on small, tabular 

biomedical datasets. 

The aggregate confusion matrix for each model 
(Figures 4-6) provides deeper insights into 
classification patterns across different 
genotypes. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Aggregate confusion matrix for the random forest model, showing the 
distribution of true and predicted genotypes. The model correctly classified all SS and AA 
samples but misclassified an AA sample as AS. 



Exploratory Evaluation Of… Rahman Abiodun Olalekan.… 

Academy Journal of Science and Engineering 19(5)2025 P a g e | 80 
OPEN ACCESS 

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) 

 

 

 

 

Figure 5: Aggregate confusion matrix for the SVM model. Similar to Random Forest, SVM 
correctly identified all SS, however failed to correctly classify the AS samples

 

 

Figure 6: Aggregate confusion matrix for the Neural Network model. This model correctly 
classified all SS samples but showed lower accuracy for AA samples and failed to correctly identify 
the AS sample.  
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Analysis of the confusion matrices reveals a 
critical and consistent pattern across all three 
models: 

1. Excellent SS Detection: All models 
correctly identified nearly all sickle cell 
anemia (SS) cases, demonstrating very 
high sensitivity for the most severe 
genotype.  

2. Failure to Detect AS: All four sickle 
cell trait (AS) cases were misclassified 
as normal (AA) by every model. This 
0% recall for the AS class is a major 
limitation of this work.  

3. Good AA Detection: The models 
performed well in identifying normal 
(AA) individuals, with only minor 
misclassifications.  

This robust validation confirms that while the 
models are effective at separating SS patients 
from others, they completely failed to 
distinguish the AS trait. This is a direct 
consequence of the small number of AS samples 
(N=4) in the dataset, from which the models 
could not learn a discriminative pattern. 

4.5 Comparison with the existing literature 

Table 4: Comparison of current work with the existing literature 

Study  Data type Best classifier Overall accuracy 
Alzubaidi et al. (2020)  Microscopy images  CNN-SVM hybrid 99.54 %  
de Haan et al. (2020)  Smartphone images  DL (ResNet)  98.00 %   
Ekong et al. (2023  Clinical labs Bayesian network  99.00% 

Current work  Haemorheology labs  RF / SVM  90.9 %  

While image-based deep learning pipelines 
achieve higher accuracies, they require costly 
imaging hardware and extensive preprocessing. 
Our approach leverages routine haemorheological 
tests that are inexpensive, rapid, and already part of 
standard care in low-resource settings, fulfilling 
the “affordable screening” niche highlighted by 
Long & Bai (2024). The modest drop in overall 
accuracy (≈ 9 %) is therefore an acceptable 
trade-off given the resource constraints. 
However, the limitation of this research can be 
summarized and discussed as follows: 

Class imbalance: Only four AS participants 
were available, limiting the model’s ability to 

learn trait-specific patterns.  

1. Sample size: n = 54 is small for robust 
ML; cross-validation mitigates variance 
but cannot replace external validation.  

2. Single centre data: All measurements 
originated from one Nigerian hospital, 
possibly restricting generalisability to 
other ethnic or geographic populations.  

• Future work should prioritize multicentre data 
collection (≥ 300 participants) and feature 
enrichment (e.g., reticulocyte count, HbF 
level) to strengthen AS discrimination. 
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5.0 CONCLUSION 

This study demonstrates the potential of 
machine learning algorithms, particularly 
random forest and support vector machine, 
for determining haemoglobin genotype 
from haemorheological parameters with 
high accuracy. The research findings 
suggest that ML leveraging routine lab 
parameters is a promising screening tool for 
sickle cell disease, but is not yet viable for 
comprehensive genotype classification due to 
challenges with small dataset size and class 
imbalance. Future works need to focus on 
acquiring larger, more balanced datasets to 
improve the detection of the AS trait. This 
study successfully demonstrated the 
potential of machine learning, specifically 
Random Forest and Support Vector 
Machine algorithms, to accurately classify 
sickle cell genotypes (AA, AS, SS) using a 
minimal set of routinely measured 
haemorheological parameters from a 
Nigerian cohort, achieving a peak accuracy 
of 90.9% ± 5.8%. The analysis 
conclusively identifies Packed Cell 
Volume (PCV) and Plasma Viscosity (PV) 
as the most critical features for this 
classification. However, the study also 
precisely identifies a significant limitation: 
the models consistently fail to reliably 
distinguish the Sickle Cell Trait (AS) from 
the normal (AA) genotype, a finding 
attributed to the subtle haemorheological 
differences in AS carriers and the inherent 
class imbalance in the dataset. Therefore, 
while this ML approach is a highly 
effective and cost-efficient screening tool 
for the severe Sickle Cell Anemia (SS) 
phenotype in resource-limited settings, it is 
not yet a standalone diagnostic tool for 
comprehensive genotype classification. 
Future research must prioritize the 
acquisition of larger, balanced datasets and 
the integration of more sophisticated 
feature engineering to enhance the 
detection of the clinically important AS 

trait. 

In summary, leveraging inexpensive 
haemorheological measurements together 
with interpretable machine learning 
algorithms offers a feasible pathway toward 
low-cost SCD screening in resource-limited 
environments, provided that future studies 
address the current data-size and 
class-imbalance constraints.  
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