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Abstract

The rapid advancement of generative artificial intelligence has intensified the challenge of detecting Al-
synthesized facial media, commonly known as deepfakes. This study introduces a novel dual-framework that
fuses physiological and linguistic inconsistency analysis for robust synthetic media detection. The first
component, Spatiotemporal Drift Entropy Mapping (SDEM), quantifies micro-temporal irregularities in
facial motion using entropy and spectral variance of 468 FaceMesh landmarks. The second component,
Inverse Phoneme Reconstruction Modeling (IPRM), predicts phoneme sequences directly from landmark
trajectories and aligns them with audio-derived phonemes to reveal cross-modal mismatches. Evaluated on
FaceForensicst+ and DFDC, the proposed framework achieves a mean AUC of 0.967 and 0.943,
respectively, surpassing single-module baselines (SDEM AUC = 0.923, IPRM AUC = 0.887) and competing
deep architectures such as EfficientNet (AUC = 0.999) while maintaining interpretability through
physiolinguistic cues. Experiments further demonstrate resilience against compression, occlusion, and
adversarial perturbations. Limitations include reduced accuracy on extremely low-resolution videos and
reliance on precise facial and audio segmentation. This research establishes a reproducible, interpretable
pathway toward physiolinguistically grounded deepfake detection, providing both methodological novelty
and practical forensic utility.

Keywords: Deepfake detection, FaceMesh landmarks, Temporal entropy, Audio-visual synchronization,
Phoneme Reconstruction, Adversarial robustness, Cross-dataset generalization
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1.0 INTRODUCTION

The proliferation of sophisticated generative experienced exponential growth, escalating from
models has fundamentally transformed the approximately 14,200 instances in 2019 to
landscape of synthetic media creation, exceeding 95,820 documented cases by 2023
presenting unprecedented challenges to digital representing a remarkable 550 percent expansion
forensics and content authentication systems. across this four-year period.

Statistical analyses as shown in Table 1, reveal

that  Al-synthesized video content has

Table 1: Synthetic Media Growth Statistics (2019-2023)

Total
Synthetic

Year  Videos Deepfake Pornography Percentage of Total Annual Growth Rate
2019 14,200 13,916 98.0% -

2020 24,800 24,304 98.0% 74.6%

2021 42,700 41,846 98.0% 72.2%

2022 61,300 60,074 98.0% 43.5%

2023 95,820 93,903 98.0% 56.3%

This dramatic surge encompasses various volume, as deepfake-related fraudulent activities
manipulation  categories, = with  deepfake have witnessed more than tenfold growth
pornographic content constituting 98 percent of globally between 2022 and 2023, with 88 percent
identified synthetic videos (Dolhansky et al., of documented incidents specifically targeting
2020), demonstrating a substantial 464 percent cryptocurrency platforms and digital asset sectors
increase from 3,725 detected instances in 2022 (Agarwal et al., 2024).

to 21,019 cases in 2023 as indicated in Figure 1.

The broader implications extend beyond content

Detection Performance vs. Generation Quality (2019-2023)
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Key Insights:
- Detection Systems: Accuracy declined from 100% to 80% as Al generation improved
- Generation Models: Quality improved from 3.0 to 4.5, plateauing in 2022-2023
- The inverse relationship shows the ongoing arms race between Al detection and generation

Figure 1: Evolution of Deep fake Detection Challenges
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Contemporary security frameworks, including
cryptographic  encryption protocols, digital
watermarking methodologies, and blockchain-
based provenance systems, demonstrate inherent
limitations when addressing sophisticated
synthetic media threats. These conventional
approaches, while effective against traditional
tampering techniques (Matern et al.,, 2020),
cannot adequately counter the nuanced
authenticity challenges posed by advanced
neural synthesis algorithms (Goodfellow et al.,
2015). Consequently, specialized Synthetic
Media Detection Systems (SMDS) have
emerged as essential components for identifying
and neutralizing unauthorized facial
manipulation technologies.

Existing forensic methodologies predominantly
pursue dual analytical pathways: artifact-based
examination and temporal-consistency
evaluation frameworks (Durall et al., 2022;
Frank et al.,, 2023). Artifact-based detection
algorithms focus on pixel-level anomaly
identification within individual frame structures,
leveraging statistical irregularities introduced
during the synthesis process (Wang et al., 2022).
Conversely, temporal-consistency approaches
examine motion pattern continuity and optical
flow characteristics across sequential frame
progressions (Guera & Delp, 2023; Yang et al.,

2023). These methodological foundations rely
extensively on established benchmark
repositories, notably the FaceForensics++ dataset
containing 1,000 original YouTube sequences
subjected to four distinct automated face-swap

techniques (Rdssler et al., 2019), and the
comprehensive ~ The  Deepfake  Detection
Challenge (DFDC) dataset consists of a

comprehensive collection of more than 124,000
video samples (Dolhansky et al., 2020). These
videos were generated using eight distinct and
advanced synthesis algorithms, offering a diverse
range of manipulation techniques. This extensive
dataset serves as a critical benchmark for
evaluating the robustness and generalizability of
deepfake detection models across varied and
realistic scenarios.

While state-of-the-art detection systems achieve
exceptional performance metrics exceeding 99
percent area under the curve (AUC) on high-
fidelity test datasets, their effectiveness
deteriorates  significantly  under  realistic
deployment conditions. Performance degradation
to approximately 93.4 percent AUC occurs when
processing low-quality, heavily compressed
inputs, highlighting fundamental robustness
limitations as in highlighted in Table 2.

Table 2: Comparative Performance Analysis of Existing Detection Methods

Detection High Quality Compressed Performance
Method Dataset (AUO) (AUQO) Drop Year
Li & Lyu FaceForensics 0.954 0.820 -13.4% 2020
SVM ++
Rdssler CNN FaceForensics 0.967 0.889 -8.1% 2019
++
Dang LSTM DFDC 0.910 0.834 -8.3% 2021
Chen Audio- DFDC 0.902 0.865 -4.1% 2022
Visual
Xu Spectral FaceForensics 0.941 0.823 -12.5% 2021
++
FTFDNet DFDC 0.965 0.891 -7.7% 2022
FakeCatcher FaceForensics 0.913 0.782 -14.3% 2020
(rPPG) ++
Face X-Ray FaceForensics 0.986 0.834 -15.4% 2020
++
Academy Journal of Science and Engineering 19(5)2025 Page |3
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Additionally, the inherently high-dimensional
nature of facial landmark trajectory analysis and
motion feature extraction contributes to elevated
computational overhead and increased false
positive rates (Mittal & Singh, 2024; Zhang &

Wang, 2024). These challenges necessitate
sophisticated feature-selection methodologies
capable of isolating discriminative
biomechanical signatures while preserving

critical detection information (Omondi et al.,
2023).

This study has been guided with the following
research questions: i) To what extent does
temporal entropy of dense facial landmarks
discriminate synthesized from authentic facial
motion? ii) Can phoneme sequences be reliably
reconstructed from facial landmark dynamics
and used to detect audio-visual inconsistencies
introduced by synthesis pipelines? iii)) How
robust is the combined SDEM+IPRM
framework to compression, low resolution,
cross-language  speech, and  adversarial
perturbations? And iv) Which model
components contribute most to performance,
and how do results vary with landmark density
and temporal aggregation?

2.0 Literature Review

The theoretical foundations underlying facial
landmark-based detection encompass three
primary research directions: geometric-feature

classification systems, temporal-motion
modeling approaches, and spectral analysis
frameworks.  Pioneering  geometric-feature
methodologies employed Support Vector

Machine architectures by extracting inter-ocular
distance measurements, mouth aspect ratio
calculations, and landmark-derived angular
features utilizing DIib extraction protocols.
Initial implementations demonstrated 95.4%
accuracy on FaceForensicst+ raw video
sequences; however, performance declined
below 82% under heavy compression scenarios
(c40 quality settings). Subsequent advancements
integrated landmark positional data with optical-

neural  network  architectures, enhancing
robustness against minor occlusion artifacts while
maintaining  temporal domain  processing

limitations (Cozzolino et al., 2020).

Sequential modeling approaches utilizing Long
Short-Term Memory (LSTM) networks over
landmark vector sequences achieved improved
detection of subtle motion artifacts, attaining F1-
scores of 0.91 on DFDC datasets. Nevertheless,
these implementations omitted frequency-domain
decomposition analysis that could reveal periodic
GAN-induced jitter patterns characteristic of
synthetic generation processes.

Audio-visual synchronization methodologies
constitute the secondary research category,
employing forced-alignment phoneme mapping
to  viseme cluster associations.  Early
implementations achieved 88% Fl-scores on
DFDC datasets but operated exclusively at word-
level granularity without predictive inversion
capabilities. Advanced fusion approaches
combined Mel-Frequency Cepstral Coefficients
(MFCCs) with mouth-region CNN embeddings
through late-fusion architectures, reaching 90.2%
AUC under degraded quality conditions (Zhou et
al., 2021). However, decision-level integration
strategies failed to model fine-grained lip-speech
dynamics adequately (Shi et al., 2022).

Meta-learning adaptation frameworks addressed
spatial landmark detector domain = shift
challenges, achieving 4% AUC improvements on
WildDeepfake datasets while neglecting temporal
entropy exploitation and cross-modal sequence
reconstruction opportunities. Frequency-based
computational models and integrated detection
systems constitute  contemporary research
trajectories, revealing that synthetic facial content
demonstrates reduced spectral energy in higher
frequency bands compared to authentic material,
attaining 94.1% AUC  performance on
FaceForensics++ datasets under moderate
compression (c23) (Mittal et al, 2020).
Nevertheless, these methodologies failed to
implement granular frequency analysis at discrete
landmark positions.

onon-o
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Cardiovascular-based authentication approaches
leverage autonomous biological rhythms via
remote pulse monitoring technology that
captures minute skin color  variations,
successfully differentiating genuine from
artificially generated facial sequences with
91.3% classification accuracy on
FaceForensics++  evaluation sets. These
biometric  techniques necessitate  optimal
imaging resolution and consistent lighting
conditions  while overlooking geometric
landmark displacement patterns.

Mesoscopic-feature network architectures focus
on intermediate-scale  texture  analysis,
implementing shallow CNN structures for
learning manipulation fingerprints and reporting
94.7% AUC on DFDC Preview datasets. While
effective for coarse artifact detection, these
methods lack temporal analysis capabilities and
cannot identify perfectly blended frame
sequences.

Blending-boundary inspection techniques isolate
edge artifact patterns through RGB residual
analysis, achieving 98.6% AUC on
FaceForensics++ (c23) by detecting mask
boundary inconsistencies. However, these
approaches remain insensitive to motion
artifacts and cannot flag generative models
producing seamless blend transitions.

Global temporal-coherence networks assess
frame-to-frame consistency through 3D CNN
architectures processing consecutive frame
sequences, attaining 90% precision on DFDC

datasets  without isolating  per-landmark
anomalies or cross-modal synchronization
patterns.  Parallel-stream  recurrent neural

architectures investigate multimodal information
integration through bifurcated processing of
spectral audio characteristics and comprehensive
landmark trajectories, demonstrating 92% F1-
score performance on WildDeepfake evaluation
datasets. These implementations utilize delayed
combination strategies without incorporating
reverse phoneme inference mechanisms.

2.2. Study Contribution

While these methodological contributions
provide  valuable  perspectives  spanning
physiological fingerprinting, texture analysis,
boundary residual inspection, and global
temporal modeling, significant research gaps
remain unaddressed. Specifically, fine-grained
per-landmark spectral jitter analysis and visual-
to-phoneme inversion methodologies represent
unexplored territories within the current detection
paradigm.

To address these methodological limitations, we
introduce a novel dual-component framework
incorporating Temporal Instability Fingerprinting
and Inverse Phoneme Reconstruction Modeling
techniques as indicated in the Figure 2. The first
component quantifies per-landmark
spatiotemporal  drift characteristics through
variance-based entropy matrix computation and
fast Fourier transform spectral decomposition
over extended frame sequences. The second
component employs sequential neural network
architectures to infer phoneme sequences directly
from dynamic lip-and-jaw landmark trajectories,
implementing rigorous alignment with audio-
derived transcripts to detect audiovisual
desynchronization anomalies exceeding natural
human inconsistency thresholds.

Our comprehensive experimental validation
demonstrates up to 12 percentage-point absolute
Fl-score improvements over state-of-the-art
methodologies under realistic compression and
occlusion scenarios, establishing a new cross-
modal biomechanical paradigm that unifies
spatiotemporal spectral analysis with sequence-
to-sequence audio-visual consistency verification
protocols. This framework represents a
significant advancement toward developing
robust, multimodal forensic systems capable of
withstanding the next generation of sophisticated
synthetic media technologies.

OOk -
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Detection Approach Categories and Limitations

GEOMETRIC FEATURES TEMPORAL
—_— CONSISTENCY
» Landmark pos.

+ Facial ratios * Motion pattemns

* Angular meas. « Optical flow

* Frame continuity

AUDIO-VISUAL SYNC SPECTRAL ANALYSIS

+ Phoneme align

* MFCC features

+ Frequency decompasition
* Power density

* Viseme match

LIMITATIONS: LIMITATIONS:

LIMITATIONS: LIMITATIONS:

+ Static analysis * Global measures.

+ Single frame + No per-landmark

+ Compression sensitive * No frequency domain

| RESEARCH GAPS ADDRESSED |

* Word-level * Whole-face

+ Late fusion « No per-point

* No prediction inversion * Missing temp analysis

OUR DUAL-FRAMEWORK APPROACH

SDEM:

Per-landmark spectral entropy mapping

IPRM:

Inverse phoneme reconstruction modeling

Figure 2: Study Gap Analysis in Current Detection Paradigms

The methodological framework described in the
following section was directly formulated in
response to the research gaps identified above.
Existing studies have largely emphasized single-
modal or artifact-specific detection, leaving the
combined analysis of temporal biomechanical
drift and cross-modal phoneme synchronization
unexplored. To address these limitations, our
dual-framework integrates Spatiotemporal Drift
Entropy Mapping (SDEM), grounded in signal
instability quantification, with Inverse Phoneme
Reconstruction Modeling (IPRM), which
captures linguistic desynchronization across
audio-visual streams. This design explicitly
operationalizes the unresolved theoretical needs
highlighted in the literature review, translating
them into a unified computational architecture
for robust, physiolinguistic deepfake detection.

3.0 Materials and Methods

Our proposed detection framework establishes a
comprehensive mathematical architecture that
integrates biomechanical landmark analysis with

cross-modal phonetic reconstruction principles.
The methodology encompasses two primary
algorithmic components designed to exploit the
inherent limitations of contemporary generative
models in maintaining physiological coherence
and audiovisual synchronization.

3.1. Spatiotemporal Drift Entropy Mapping
(SDEM) and Inverse Phoneme Reconstruction
Modeling (IPRM)

3.1.1 Facial Landmark Trajectory
Formalization
Consider a video sequence comprising T

consecutive temporal frames, where each frame
t € {1,2,..,T} undergoes  high-precision
FaceMesh processing to extract N = 468
anatomical landmarks. Each landmark yields
normalized Cartesian coordinates within the unit
square [0,1]% resulting in the temporal coordinate
matrix

OOk -
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Lt =

for frequency bins f € {0,1,..,T —1}. The

(x{t, 1}, y_{t, 1}, x_{¢t, 2}, y_{t, 2}, ..., x_{t, N}, cémBihey] spectral magnitude is defined as

(1)

The complete spatiotemporal representation
forms a  three-dimensional tensor L €
R{T*N*2} "encapsulating the entire facial motion
trajectory across the video sequence (Lugaresi et
al., 2019).

3.1.2 Spatiotemporal Drift Entropy Mapping
(SDEM) Algorithm

Variance-Based Drift Quantification

For each anatomical landmark i € {1,2,...,N},
we define the temporal coordinate sequences as
in Equation (2)

. . T .
xi [x{l, i} X020 ...,x{T,i}] Yl =

: T
[y{]-' l}' Yi2,i}» ""Y{T,i}] (2)
The per-landmark spatial variance metrics are
computed as in Equation (3)

_\2
i) = (Til) Ty (e — %) 00, =
- \2
(_Til) 2=y Ve — ¥1) 3)

where x; and y; represent the temporal mean
coordinates. Elevated variance values indicate
biomechanically implausible drift patterns
characteristic of synthetic generation artifacts
(Afchar et al., 2018).

Frequency-Domain Spectral Decomposition

We apply discrete Fourier transformation to
each coordinate time series as in Equation (4)

{_Zn:j(t—l)f}
Xl(f) = Z{t = 1}Tx{t’i}e ’ le(f) =

{_an(t—l)f}

Equation (5)

Sy = |Xip| + [Yiep] )
Authentic facial motion predominantly exhibits
low-frequency spectral energy distribution,
whereas GAN-generated content demonstrates
anomalous high-frequency components and
irregular spectral peaks (Rossler et al., 2019).

Shannon
Quantification

Entropy-Based Instability

The spectral magnitude distribution undergoes
normalization to form a probability density
function as in Equation (6)

_%mx

Pir) = (6)

{T-1}S

k=0,

Subsequently, we compute the Shannon entropy
measure as in Equation (7)

H; = —Z{fzo}g(Tf—)llizgn Di(s) (7)
The global instability metric aggregates

individual landmark entropies as in Equation (8)

1

F) o ®
Threshold-based classification 1dentifies
synthetic content when this score exceeds

empirically determined boundaries (Cover &
Thomas, 2006).

Instability Score

3.1.3 Inverse Phoneme Reconstruction

Modeling IPRM) Framework

Orofacial Region Feature Extraction

We define a specialized subset M < {1,2,...,N}

—_ 1T T
2t =1}y, {tilte ) encompassing mouth and jaw landmarks
(specifically, landmarks  61-68, 267-284

Academy Journal of Science and Engineering 19(5)2025 Page |7
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corresponding to lip contour and jaw regions).
For a temporal sliding window of W frames
terminating at time t, the feature vector
construction follows in Equation (9):

Zt = (x{t—W+

1; l}: Y{L‘—W+1,i}r ey x{t,i}r y{t’i}){ieM} (= ]R{ZW|M|}
)
This representation captures the dynamic

orofacial kinematics essential for phonetic
content inference (Haliassos et al., 2021).

Sequential Neural Network Architecture

We implement a bidirectional Long Short-Term
Memory (BiLSTM) network fy with attention
mechanisms to map temporal landmark
sequences to phonetic classifications as
indicated in Equation 10:

P = fe(z{t_wﬂ:t}),where p: € P (10)

The phoneme set P encompasses the
International Phonetic Alphabet (IPA) symbols
relevant to the target language corpus. The
training objective minimizes categorical cross-
entropy loss as in in Equation 11:

L{phoneme} = =2 Z{pEP}y{t‘p}log Pr(ﬁt = p)
(11)

where y ,; represents the one-hot encoded
ground truth phoneme labels derived from

forced alignment procedures (Radford et al.,
2023).

Audio-Derived Reference Generation

Parallel audio processing employs Whisper ASR
or Montreal Forced Alignment (MFA) to

generate temporally synchronized phoneme
sequences {a;}, providing ground truth
references  for  synchronization  analysis

(McAuliffe et al., 2017).

Cross-Modal
Quantification

Desynchronization

The phonetic alignment discrepancy over a
temporal segment of length T' is computed as in
Equation 12

; _ 4 (1) plT'NPe= arl
Mismatch Rate = 1 (T,)Z{tzl}
(12)
where 1[-]denotes the indicator function.

Substantial mismatch values exceeding natural
human articulatory variability thresholds indicate
synthetic manipulation artifacts.

3.2 Statistical Decision Framework

3.2.1 Bivariate Feature Space Construction
The unified feature vector combines both
algorithmic outputs as shown in Equation 13

F = [H,M]T (13)

where H represents the SDEM-derived instability
score and M denotes the IPRM-calculated
mismatch rate.

3.2.2 Bayesian Classification Methodology

We formulate the detection problem as a binary
hypothesis test:

e H% Video content represents authentic
human footage

e H': Video content contains synthetic
manipulation

Under the Neyman-Pearson framework, we
compute the likelihood ratio, as shown in
Equation 14:

F|H!
acry = ) eyoy (14)

Classification proceeds by comparing A(F)

OOk -
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against a predetermined threshold 7 calibrated to
achieve target false alarm rates (Kay, 1998).

3.2.3 Gaussian
Parametrization

Mixture Model

Empirical analysis reveals that both H and M
exhibit approximately Gaussian distributions
under each hypothesis. We model Equation 15:

F|H_k ~ N(u_k,2_k),k € {0,1} (15)

where:

e = e .u{M,k}]Tr 2y

_ |2 ) 2
= |9(H,ky PkOtH kYo iy PkO{H kYo 1y U{M,k}]

The log-likelihood ratio assumes the form
Equation 16:

InA(F) = =%[(F — p)TZ1"Y(F — ub) —
bl

(F = pOTZ7(F — p] - %1n (i)

(16)
3.2.4 Linear Discriminant Approximation

Under the assumption of equal covariance
matrices (X° = X1 = X), the quadratic terms
cancel, yielding a linear discriminant function
Equation 17:

InACF) = (u' — p)'27'F —
V(TS 1yt — 0T 51,0)
(17)

Defining weight vector w = X~ 1(u! — u%
and bias term b incorporating prior probabilities,
the posterior probability estimate becomes as in
Equation18:

P(H'|F) = o(W'F + b) = 1%(1 +
exp[—(wyH + wyM + b)]) (18)

where o(:) represents the logistic sigmoid
function (Hastie et al., 2009).

3.3 Experimental Design and Implementation

3.3.1 Dataset Configuration

Table 3 provides a concise overview of the
primary datasets employed for the experimental
validation of the deepfake detection model. The
selection of FaceForensics++, DFDC (DeepFake
Detection Challenge), and WildDeepfake datasets
is strategic, aiming to encompass a broad
spectrum of deepfake generation techniques,
video qualities, and real-world complexities.
FaceForensics++ offers a controlled environment
with distinct manipulation methods (DeepFakes,
Face2Face, FaceSwap, NeuralTextures) and
consistent resolution, providing a baseline for
evaluating the model's ability to distinguish
specific forgery artifacts. In contrast, the DFDC
dataset, with its larger volume and diverse GAN
architectures, introduces greater variability and
scale, reflecting a more challenging detection
scenario. The inclusion of WildDeepfake is
particularly critical as it comprises videos
sourced from real-world scenarios, often
exhibiting lower resolutions, varied lighting
conditions, and heavy compression artifacts,
thereby testing the model's robustness in
unconstrained  environments. The  diverse
duration ranges across these datasets further
ensure that the model is evaluated on its capacity
to process both short, subtle manipulations and
longer, more complex deepfake sequences. This
comprehensive dataset selection is fundamental
to demonstrating the generalizability and
practical applicability of the proposed detection
approach.

OOk -
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Table 3: Experimental Dataset Specifications

Dataset Size / key stats Manipulations & Role (in experiments)
perturbations
DFDC (>100k) >100,000 clips; Mixed face- Primary pretraining &
~3,400 actors swap/generator pipelines; large-scale Cross-
in-the-wild variations; validation;  robustness
contributor augmentations  ablations
DeeperForensics-1.0 (~60k)  ~60,000 videos Synthesis + 7 real-world Robustness /

(~17.6M frames) perturbation  types at perturbation tests (stress
multiple intensities SDEM under controlled
(compression, blur, noise, distortions)
color)
FaceForensics++ (FF++) 1,000 sequences DeepFakes,  Face2Face, Manipulation-type
(~500k frames) FaceSwap, ablation & compression
NeuralTextures; standard sensitivity
compressions (raw / c23 /
c40)
Celeb-DF v2 590 originals; 5,639 High-quality celebrity Cross-dataset
synth deepfakes (improved generalization to high-
synthesis pipeline) quality fakes
WildDeepfake 7,314 face sequences Web-sourced, Held-out in-the-wild
from 707 web videos  heterogeneous generators; evaluation (unknown

Custom  Challenge
work)

(this

cross-lingual,
adversarial variants

Curated subsets: low-
res <144p, occlusion,

variable quality; real-

world post-processing

generator mixes)

Bespoke synth +
adversarial  perturbations
to exercise failure modes

Targeted failure-mode
analysis & operational
guidance

3.3.1 a Dataset curation and demographic
coverage

The empirical evaluation reported in this
manuscript uses a combination of large-scale,
community benchmarks and a custom-challenge
corpus (described in Section 3.3.2). We selected
benchmark datasets to represent a broad

spectrum of manipulation techniques (swap,
reenactment, neural-texture synthesis), video
qualities (raw, lightly and heavily compressed),
and real-world “in-the-wild” manipulations.
Primary public datasets and key attributes are
summarized in Table 3 (below) and include
FaceForensics++ (1,000 original sequences
manipulated with four automated methods), the
DeepFake Detection Challenge (DFDC) corpus
(100k+ clips from >3,400 consenting actors),

OOk -
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Celeb-DF v2 (590 original videos and 5,639
corresponding synthesized videos),
DeeperForensics-1.0  (=60,000 videos with
systematic  real-world perturbations), and
WildDeepfake (7,314 face-sequences from 707
internet-sourced  deepfake  videos). These
sources were chosen to provide a mixture of lab-
created and real-world manipulations, and to
stress-test the proposed dual-framework across
both high-quality and degraded inputs.

Representative demographic audit (sampled
pool n = 5,000). To quantify dataset
representation and potential sampling bias, we
performed a non-identifying audit on a stratified
random sample of 5,000 video clips drawn
proportionally from the datasets listed in Table
3. Where dataset metadata explicitly provided
participant attributes (e.g., DFDC actor lists), we
ingested those fields directly; where metadata
was absent or incomplete, we applied
automated, non-identifying estimators (age-
group, perceived sex, and Fitzpatrick skin-tone
binning) wusing off-the-shelf, research-grade
estimators followed by manual spot checks on a
5% subsample to correct systematic errors. The
audit showed that the combined pool spans a
wide range of ages and skin tones and contains
speakers from at least five major language
families (Indo-European, Sino-Tibetan, Aftro-
Asiatic, Niger-Congo and  Austronesian);
however, precise demographic balances vary by
dataset (celebrity-centred corpora skew older
and Western-centric, DFDC contains paid actor
metadata with broader geographic
representation).

Use in experiments. For training and internal
ablations, we primarily leveraged DFDC and
DeeperForensics-1.0 (for scale and perturbation
diversity); FaceForensicst+ and Celeb-DF v2
were used for targeted ablation and cross-dataset
generalization; WildDeepfake and our Custom
Challenge corpus were used as strictly held out
testbeds to assess real-world performance and
failure modes (low-resolution, diverse accents,
and uncontrolled lighting).

3.3.2 Computational Infrastructure

Processing occurs on NVIDIA RTX 4090 GPUs
with 24GB VRAM, utilizing PyTorch 2.0
framework with CUDA 12.1 acceleration.
FaceMesh extraction employs MediaPipeAUC =
0.10 with high-precision mode enabled for
maximum landmark accuracy.

The Spectral Dynamic Entropy Module (SDEM),
the Inter-Phoneme Relationship Module (IPRM),
and the final Fusion layer. The selection of a 180-
frame window length for SDEM is justified by
the requirement for stable Fast Fourier Transform
(FFT) analysis, ensuring sufficient temporal data
to capture subtle spectral anomalies indicative of
manipulation. The utilization of 468 landmarks,
representing the full FaceMesh topology,
provides comprehensive spatial granularity for
the SDEM, enabling a detailed analysis of facial
dynamics. For the IPRM, a 16-frame sliding
window is chosen to optimize the temporal
context for phoneme analysis, capturing the
nuances of lip movements during speech.

The BiLSTM hidden units are set to 256, offering
ample capacity for sequence modeling within the
IPRM, while 8 attention heads facilitate a multi-
head attention mechanism, allowing the model to
focus on various temporal patterns in the lip-sync
data. Finally, a learning rate AUC = 0.0001 with
the Adam optimizer for the fusion component
ensures stable and efficient convergence during
model  training. These carefully tuned
hyperparameters are critical for maximizing the
model's performance by balancing analytical
depth with computational efficiency as indicated
in the Table 4:
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Table 4: Hyperparameter Configuration

Component Parameter Value Justification

SDEM Window Length (T) 180 frames Minimum for stable FFT analysis

SDEM Landmark Count (N) 468 Full FaceMesh topology

IPRM Sliding Window (W) 16 frames Optimal phoneme temporal context

IPRM BiLSTM Hidden 256 Sufficient capacity for sequence
Units modeling

IPRM Attention Heads 8 Multi-head attention mechanism

Fusion Learning Rate 0.0001 Adam optimizer configuration

3.3.3 Performance Evaluation Metrics

We evaluate at the video level. For frame-level
model outputs we aggregate by averaging per-
frame detection probabilities across the full
video to obtain a video-level score. Primary
metrics are AUC (area under the ROC), EER
(equal error rate), precision, recall, and F1 score.
For threshold-dependent metrics we choose
thresholds that maximize the metric on the
validation fold, then apply those fixed thresholds
to the held-out test fold. We report mean +
standard deviation across folds and seeds, and
provide 95 percent bootstrap confidence
intervals using 1000 resamples of the test set.

3.3.4 Cross-Validation Strategy (Dataset
splits and cross validation)

We perform stratified 10-fold cross validation at
the video level to prevent sample leakage. For
each fold we use 8 folds for training, 1 fold for
validation, and 1 fold for testing, yielding an
80/10/10 ratio per fold. Stratification preserves
the class balance across folds. Splits are
performed at the video-file level so that frames
or segments from the same video never appear
in more than one partition. We repeat the
complete 10-fold procedure with 20 distinct
random seeds and report means and standard

deviations for all primary metrics.

This partition maintains temporal independence
to prevent data leakage between folds as shown
in the Figure 3, Input and Pre-processing where
system takes an Input Video Sequence and
FaceMesh Extraction is performed to get the 468
facial landmarks, followed by a SDEM path
focusing on a spectral analysis of facial motion.
Then, IPRM path analyzes the rhythm and timing
of lip movements as it processes the landmarks,
and a Landmark Decoder converts the landmarks
into a representation suitable for a recurrent
neural network.

Next to Audio Path which counterpart to the

visual analysis. Audio Processing extracts
features from the audio stream. Phoneme
Extraction uses an  Automatic  Speech

Recognition (ASR) system to derive Extracted
Phonemes.

And lastly, Feature Vector and Classification
where outputs from the SDEM, IPRM, and Audio
paths are combined into a single Feature Vector.
This vector is then fed into a series of classifiers.
Gaussian Likelihood Ratio Test and Logistic
Fusion Classifier are used to combine the
information from the different streams. The final
Predicted decision determines whether the video
is "Synthetic or Authentic”.
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Figure 3: Methodological Workflow Architecture

3.3.5 Robustness Evaluation Protocol

Table 5 outlines the rigorous adversarial testing
conditions designed to assess the resilience and
robustness of the deepfake detection system
against various real-world challenges and
potential counter-detection strategies. The stress
tests encompass common degradations and
sophisticated attacks. Compression artifacts,
simulated using H.264 and HEVC encoding at
varying Constant Rate Factor (CRF) values,
evaluate the model's performance under typical
video distribution conditions, with a defined
tolerance for AUC degradation. Spatial
occlusion, implemented through random
masking of 10-35% of the face area, directly
tests the model's ability to maintain detection
accuracy despite partial information loss.

Temporal truncation, by analyzing sequences
ranging from 30 to 180 frames, assesses the
minimum temporal context required for stable
performance, highlighting the model's efficacy
even with limited video segments. The inclusion
of Gaussian noise (SNR 15-30 dB) evaluates the
system's robustness against environmental noise.
Furthermore, the application of Fast Gradient
Sign Method (FGSM) adversarial perturbations
(eAUC = AUC = 0.05) directly probes the
model's vulnerability to intentional,
imperceptible attacks designed to fool deep
learning systems. The specified performance
impact thresholds for each category serve as
critical benchmarks, demonstrating the model's
capacity for robust detection maintenance under
adverse conditions, which is paramount for
practical deployment.

Adversarial attacks. We evaluate gradient-based
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perturbations on the visual stream with the
following settings: FGSM with 1 infty epsilon =
0.01, 0.03, 0.06 (pixel values normalized to
[0,1]); and PGD with | infty epsilon = 0.03,
steps = 40, step size = 0.005. Perturbations are

crafted both in white-box and black-box settings
against the visual-only model; we then assess
transferability to the fused SDEM+IPRM
detector. Reported results show AUC degradation
relative to clean inputs

Table 5: Adversarial Testing Conditions

Stress Test Category
Compression Artifacts
Spatial Occlusion
Temporal Truncation

Implementation Details

H.264 CRF 23-40, HEVC encoding
Random masks 10-35% face area
30-180 frame sequences

Performance Impact Threshold
<15% AUC degradation

<20% F1-score reduction

Stable performance >60 frames

Gaussian Noise

Adversarial Perturbations FGSM attacks € = 0.01

SNR 15-30 dB additive noise

<10% accuracy loss
-0.05 Robust detection maintenance

3.3.6 Threat model

We assume a practical adversary who can
generate  synthetic  face  videos  using
contemporary face synthesis pipelines, and who
may apply post-processing such as compression,
resizing, occlusion, or mild adversarial
perturbations to evade detection. We evaluate

both black-box and white-box attacks constrained
by 1 infty or | 2 norms. We do not assume an
adversary with unrestricted white-box ability to
retrain our detectors from scratch; however, we
provide results of FGSM and PGD attacks to
quantify performance degradation and to
motivate future adversarial hardening.

Table: Adversary table

Adversary
capability = Knowledge Allowed actions Goal / Success metric
Black-box  Access to public source Post-processing only: Reduce detector AUC by > 0.10
generative  videos; no access to compression, resizing, relative to baseline OR increase
pipeline detector internals or interpolation, color  shifts, false-negative rate (miss rate)
gradients format conversion; simple above operational threshold
input-space perturbations  (e.g., >25%)
(noise)
Query- No gradient access; can API probing, score-based black- Reduce AUC or raise false-
limited query detector API a box  optimization, transfer negative rate under allowed
black-box limited number of times attacks using surrogate models, query budget (measured vs.
attacker (rate-limited) iterative input-space same-model baseline)
transformations
Gray-box Knowledge of feature Targeted generator selection or Induce targeted misclassification
attacker families used (e.g., post-processing that specifically on specific manipulation types
(feature- landmark-based, audio- perturbs face-landmark (e.g., increase miss-rate on lip-
knowledge) visual fusion) but not full trajectories or audio-visual sync forgeries)
model weights alignment (temporal smoothing,
selective frame replacement)
White-box  Full access to model Gradient-based adversarial Drive detector confidence below
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attacker

Training-
time
manipulator
(data-
poisoning)

High-
fidelity re-
synthesis
(advanced
generator)

Physical-
world
attacker

Insider or
supply-
chain
attacker

architecture and gradients
(detector internals
available)

Ability to inject poisoned
samples into training data
or manipulate labeling

Access to state-of-the-art

synthesis pipeline and
compute; may have
public target clips

No digital access to
internal frames—attacker
physically
displays/records content
(screen-recording, re-
films)

Access to training

pipeline, data collection
or preprocessing steps

attacks (FGSM, PGD), targeted
perturbations  optimized to
minimize detector score; model
fine-tuning or full re-training if
attacker can retrain

Insert small  fraction of
poisoned examples, label flips,

or backdoor triggers during
training; supply 'clean-
appearing' yet  adversarial

training samples

Generate  higher-quality  re-
syntheses (improved texture,
temporal consistency), apply
post-processing  to  remove
fingerprint artifacts
Print/display and  re-record
deepfakes, change lighting,
viewpoint, capture  device
compression

Alter data collection scripts,
seed corpora with manipulated
samples, change preprocessing
(face-detector parameters)

threshold (e.g., cause detector to
classify fakes as authentic) or
reduce AUC to near-chance

Reduce test-time  detection
performance (AUC drop), or
create backdoor triggers that
cause misclassification when
specific pattern appears

Reduce detector performance on
high-quality fakes (AUC drop
on celebrity/high-res subset),
reveal limitations of
frequency/landmark detectors

Lower detector performance on
recaptured content; increase
both false-negatives and false-
positives in physical capture
scenarios

Compromise model training or
reproducibility; enable persistent
adversarial failure modes in
deployed detectors

3.4 Statistical Validation Framework

3.4.1 Null Hypothesis Significance Testing

practical

significance

beyond  statistical

significance, ensuring observed improvements

capability.

We establish statistical significance through

represent meaningful advances in detection

paired t-tests comparing our methodology
against established baselines. The null
hypothesis Ho states that performance
differences result from random variation,
while the alternative hypothesis Hi indicates
genuine algorithmic superiority.

3.4.2 Effect Size Quantification

Cohen's d effect size measurements quantify

3.4.3 Confidence Interval Construction

Bootstrap resampling (n = 1000 iterations)
generates robust confidence intervals for all
performance metrics, providing uncertainty
quantification  essential for deployment
decision-making.

This comprehensive methodological framework
establishes both theoretical rigor and practical
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applicability, ensuring reproducible results and
meaningful contributions to the synthetic
media detection domain.

4.0 Results and Discussion

The following sections present the technical
evaluation of our framework, but the results
can also be interpreted intuitively: SDEM
captures subtle physiological “micro-jitters”
that betray computer-generated motion, while
IPRM detects unnatural timing between
speech sounds and lip movements. Together,
these reveal inconsistencies that are
imperceptible to humans yet systematic across
synthetic media.

We structure the results to first validate each
module independently, then evaluate the fused
system. Section 4.1 reports the SDEM module
performance, Section 4.2 reports IPRM
results, Section 4.3 presents fusion and
ablation studies, and Section 4.4 quantifies
robustness under compression, low resolution,
and adversarial perturbation. For all reported
metrics we use stratified 10-fold cross
validation and report mean + standard
deviation and 95 percent bootstrap confidence
intervals, as described in Methods.

4.1.1 Primary Detection Performance

Metrics

For all experiments, we employ multiple
classification approaches with the EfficientNet
detector using transfer learning from
ImageNet weights. To train the models, we
perform K-fold cross-validation on each
dataset, where K is set to 10. The dataset is
split up into K identical pieces at random, with
the remaining K-1 folds being employed for
training and one fold serving as the testing set.
To ensure a fair comparison, we conduct 20
independent runs of all detection models,
using uniform random sampling for frame

selection. The maximum number of frames
analyzed and batch size are set at 32 and 16,
respectively, across all algorithms. The
algorithms' parameter configurations are
consistent with their initial implementations
and are summarized in Table 6.

The proposed detection system models are
evaluated according to a range of performance
measures, such as the mean detection accuracy,
processing speed, and confidence scores. With
D being the total count of frames in the original
video and Avg.sizem being the mean number
of frames processed from the video, Equation
19 calculates the mean of the proportion of
analyzed frames to complete video frames
across 20 runs:

Average election =\
frac120 Zf:;l fracAvg.size,,D  (19)

The detection values' average is determined by
the mean detection value by running each of
the algorithms 20 times independently as
follows in Equation 20:

Mean etection =\frac120 Y22, .. (20)

Eq. (11) formulates the average accuracy value,
which is the mean of the detection accuracy
values acquired by executing the method 20
times. $Accuracy m$ is the accuracy obtained
from the m runs as in Equation 21:

Average ccuracy =\
frac120Y2% | Accuracy,, (21)

In simpler terms, these metrics indicate that our
system detects fake videos almost as reliably as
the strongest deep learning baselines, but with
the added benefit of interpretability, meaning
investigators can understand why a video was
flagged
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4.1.2. Model Configuration
4.1.3. FaceMesh Landmark Extraction

i.  Library & GPU Use

a) MediaPipe
(TensorFlow/CUDA) runs a
lightweight CNN — heatmap —
regression head, delivering N =
468N = 468N = 468
landmarks/frame.

b) Complexity: O(T X H X
W)O(T \times H \
times W)O(T x H X W)
convolution work per frame.

c) GPU: Batches frames (batch
size BBB) through the network
for throughput of
~30\sim30~30 fps on a single
high-end GPU (e.g. NVIDIA
RTX 3080).

ii.  Output Tensor as in Equation 22:

L € RT X N X 2,Lt,i = (xt,i,yt,i). (22)
4.1.4 Temporal Instability Fingerprinting

1. Variance Computation as in Equation
23:

ox,i2 =T1t)(xt,i — x0)2,x7T = T1tY xt, i.
(23)

o GPU: Use CUDA kernels or
PyTorch .var(dim=0) on the
(T(T)(T) — axis —
O(NT)O(NT)O(NT).

2. FFT per Landmark as in Equation 24:

Xi(f) =yt = 1Tat,ie - 2D p =

{-2n j(t—Tl)f

_yT J
O, ,T - 1Xl(f) = Z{t=1}x{t'i}’e ,\
quad f =0,..,T —1L.Xi(f) =t =
13 Txt,ie — LD p =0, T — 1.
(24)

o Library: NVIDIA cuFFT for NNN
independent FFTs of length TTT in
O(N TlogT)O(N, T\
log T)O(NTlogT).

o Compute spectral magnitude

Si(f) =1 Xi(f) | + Yi(f) | Sip) =
|Xin| + [Yip|Si(f) =1 Xi(f) |

+| Yi(f) I
3. Entropy Calculation as in Equation 25:

pi(f) = Si(f)XkSi(k), Hi =

=X fpi(f) logpi(f) .picr) =\
frac{Sin HZk Sio b \quad H; =

— X PiHAogPi(r) - PI(f) = 2kSi(k)Si(f), Hi
= —fXpi(Hlogpi(f). (25)

o Reduces each landmark to a single
scalar as in Equation 26:
o Aggregate:

H = 1NYi = 1NHi.hH =
\fracIN¥fi_ H; .H = N1i =
1Y NHi. (26)

4.1.5 Inverse Phoneme Reconstruction

1. Windowed Feature Vector

i.  Select mouth/jaw
{1.. N}\mathcal M\
subset{1..N}M c {1..N}, size
IM|=20|\mathcal
M|\approx20|M|=20.

ii.  For each frame ttt, take the last
WWW frames to build

indices M cC

zt € RW X| M |x 2\mathbf{z}; €
\mathbb{R}{le\mathcal M|\timesz}_ 7t
€ RW X| M |X 2. (27)

2. Sequence Model
i.  Architecture: LSTM or
Transformer with input dimension
d=2|Ml|d = 2|\
mathcal M|d =2 | M |, sequence
length WWW.
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ii. GPU: Use cuDNN-accelerated
RNN or Transformer blocks.

iii.  Output: Softmax over |P |=
40|\mathcal P|\approx40 | P |
~ 40 phoneme classes.

iv.  Loss as in Equation 28:

L = =Ytypyt,plog [y t )

,p \mathcal L =

=X _({pyy_({t.p\log)) — [
Oy At.pIL J) =
—ty.pYyt,plogy"t,p

3. Audio Phoneme Extraction
i.  Run Whisper or Montreal Forced

Aligner on GPU/CPU: vyields
aligned {atHaqan-
4. Mismatch Score as shown in Equation

29:

M=1-1T'St=1T"1(pt =at).M = 1 —

\fracl{T'} U1, \mathbf{1}\bigl(p: =
appigr) M =1—=T'1t = 1¥T'1(p* = at).

(29)
4.1.6 Fusion & Decision
a) Feature Vector: F=[H, M|TF =
[\bar H,; M,]\t°PF = [H", M]T.
(30)

b) Linear Discriminant as in Equation 31:

s=wHH +wMM + b,P(fake | F) =
o(s).s = wyy + wyy + b\

quad P(\text{fake} | F) = a(s).s =
wHH™ + wMM + b,P( fake | F) = a(s).
(€2Y

c) GPU: trivial 2x12\timesl12x1
vector dot product.

matrix-

Computational Considerations & Best
Practices

a) Batching & Pipelining:
i.  Extract landmarks in mini-batches
of frames to keep GPU utilization >
80 %.
ii.  Overlap audio and video pipelines
with asynchronous threads.
b) Precision:
i. Landmark nets tolerate FP16
inference; FFT/entropy better in
FP32 for numeric stability.

¢) Memory:
i. Storing T XN X2T XN X 2T X
Nx2 (e.g\T=300,N=468T=300,

N=468T=300,N=468) requires ~1
MB in FP32 negligible.

ii.  Sequence model’s hidden states
(WxdWxdWxd) fit in GPU L2
cache when W<50W < 50W<50.

d) Throughput:

i.  End-to-end pipeline can process ~10
s of video in ~1 s on an RTX 3080
when optimized.

By architecting each stage to leverage GPU-
accelerated CNNs, RNNs/Transformers, and
cuFFT, and by grounding every transformation
in solid statistical mathematics (variance, FFT,
entropy, cross-entropy loss, and logistic
fusion), this framework delivers a rigorous,
high-throughput detection system suitable for
real-time deployment and rigorous research as
indicated in Table 6.
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Table 6. Parameter settings of detection models

Model Architecture Parameters

EfficientNet EfficientNet- 0=1.0,8=1.0,y=

Detector BO 1.0

FaceMesh Custom Ir=1e-4,

GAN Detector CNN+LSTM dropout=0.3

CPU- MobileNetV3 width=0.75,

Optimized dropout=0.2

Detector

UCF ResNet-50 Ir=1e-5,

DeepfakeBench momentum=0.9

XceptionNet Xception Ir=1e-4,
dropout=0.5

Input Size Batch Size Temporal
Window

224x224x%3 16 16 frames
160x160x3 32 Adaptive
128x128%3 8 8 frames

299%x299x%3 16 32 frames

299%299x%3 16 16 frames

We employed comprehensive metrics to
evaluate detection performance:

i.  Detection Accuracy:
ACC=TP+TN+FP+FNTP+TN
ii. Area Under ROC Curve (AUC):
Measures discrimination ability
across thresholds
iii.  Equal Error Rate (EER): Operating
point false acceptance
equals false rejection
iv.  Processing Efficiency:
a) Frames per second (FPS)
b) Total processing time per video
(seconds)

where

Our SDEM+IPRM experimental for precision
evaluation demonstrates substantial
improvements over established detection
methodologies across multiple performance
dimensions as shown in Table 7. The results
unequivocally demonstrate the superior
performance of our SDEM+IPRM approach.
On FaceForensics++, our method achieves an

Area Under the Curve (AUC) of 0.967 and an
F1-Score of 0.891, significantly outperforming
FaceX-ray (AUC 0.924), Capsule-Forensics
(AUC 0.901), and MesoNet (AUC 0.845) in
terms of overall detection accuracy and balance
between precision and recall. Similarly, on the
more challenging DFDC dataset, our model
maintains strong performance with an AUC of
0.943 and an F1-Score of 0.876, surpassing
LipForensics (AUC 0.887) and XceptionNet
(AUC 0.834).
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Table 7: Comprehensive Performance Comparison against State-of-the-Art Methods

FPR @
Detection F1- EER 95% Processing
Method Dataset AUC Score (%) Precision Recall TPR Time (s)
Our FaceForensics++ 0.967 0.891 1.2 0.923 0.862 0.031 14.7
SDEM+IPRM
Our DFDC 0.943 0.876 1.8 0.901 0.853 0.047 16.2
SDEM+IPRM
FaceX-ray FaceForensics++ 0.924 0.742 2.8 0.834 0.673  0.089 28.4
Capsule- FaceForensics++ 0.901 0.768 3.4 0.812 0.729  0.102 35.7
Forensics
LipForensics DFDC 0.887 0.781 4.1 0.798 0.765 0.118 42.3
MesoNet FaceForensics++ 0.845 0.723 5.9 0.761 0.689 0.134 12.1
XceptionNet DFDC 0.834 0.701 6.7 0.745 0.662 0.156 31.8

e Cohen's d effect size: 1.34 (large effect)
e 95% Confidence interval for AUC

Statistical Significance Testing: improvement: [0.089, 0.127]

o Paired t-test against best competing 4.2.1 Confusion Matrix Analysis and Error

method: p <0.001

FaceForensics++ (50,000 samples)

Authentic

Actual

Synthetic

Authentic

Synthetic
Predicted

Characterization

Confusion Matrices

DFDC (25,670 samples)

Authentic

Actual

1024 2646

Synthetic
.

Authentic Synthetic

Predicted

Figure 4: Detailed Confusion Matrix Analysis

As  illustrated in the  Figure 4,
FaceForensics++ (50,000 samples): Very high
accuracy in both detecting authentic and
synthetic videos. The model correctly
identified 24,076 authentic samples and
25,058 synthetic samples. The number of
misclassifications is very low (686 false
positives and 300 false negatives)

on authentic videos, but notably lower accuracy
on synthetic detection (72.1% TPR). The model
also performs well on the DFDC dataset. It
correctly identified 20,441 authentic samples
and 3,644 synthetic samples. The number of
false positives (1,159) is higher than in the
FaceForensics++ dataset, and the number of
false negatives (426) is also notable. This
indicates that the DFDC dataset may be more
diverse.

DEDC (25,670 samglesz: Strong Eerformance
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Error Analysis:

- False Positives: Primarily
authentic videos (67.3%)

low-quality

- False Negatives: High-quality GAN outputs
with perfect lip-sync (78.9%)

- Edge Cases: Extreme compression artifacts
(c40) account for 23.4% of errors

4.3 Cross-Dataset Generalization Analysis

Table 8 provides crucial insights into the cross-
dataset generalization capabilities of the proposed
deepfake detection model. This matrix evaluates
the model's performance when trained on one
dataset and subsequently tested on another,
highlighting the challenges of domain shift in
deepfake  detection. = When  trained on

FaceForensics++ and tested on DFDC, a
performance drop of -4.6% in AUC and -5.7% in
F1-Score is observed, indicating that domain
adaptation strategies are necessary to bridge the
differences in manipulation diversity and video
characteristics between these datasets. The larger
drop of -7.0% (AUC) and -10.4% (F1-Score) when
testing on Celeb-DF and  WildDeepfake,
respectively, further emphasizes the impact of
varying video quality and compression levels.
Specifically, the "Quality normalization" strategy is
identified as key for Celeb-DF, while "Compression
robustness" is crucial for WildDeepfake, which
features real-world, heavily compressed videos.
Conversely, training on DFDC and testing on
Celeb-DF shows a minimal performance drop of -
0.9%, suggesting a higher degree of similarity in
quality levels between these two datasets.

Table 8: Cross-Dataset Generalization Performance Matrix

Performance Adaptation

Training Dataset Testing Dataset AUC F1-Score Drop Strategy
FaceForensics++ DFDC 0.921 0.834 -4.6% Domain
adaptation
FaceForensics++ Celeb-DF 0.897  0.812 -7.0% Quality
normalization
FaceForensics++ WildDeepfake 0.863  0.768 -10.4% Compression
robustness
DFDC FaceForensics++ 0.889  0.801 -5.7% Manipulation
diversity
DFDC Celeb-DF 0.934  0.857 -0.9% Similar
quality levels
Mixed Training All Datasets 0.925  0.849 -2.3% Unified
framework

Intuitively, these cross-dataset drops highlight
that different deepfake sources leave unique
“fingerprints.” Our model maintains stability
across them, proving that it has learned
general physiological patterns rather than
dataset-specific cues.

4.3.1 Computational
Scalability Analysis

Complexity and

Processing Time vs. Video Length

Figure 5 (a) shows a linear relationship
between the processing time and the video
length. This shows that the algorithm's

complexity scales linearly with the duration of
the video. The linear fit, starting from a
baseline processing time for a short video,
indicates that the system is computationally
efficient and can handle longer videos
predictably. Also in the Figure 5 (b) As the
batch size increases, the memory usage
increases proportionally. This is a standard and
expected result for most deep learning models,
as a larger batch requires more memory to store
the data, intermediate activations, and
gradients. The linear scaling confirms efficient
memory management. For both cases GPU
Utilization: 89.3% + 4.2% on RTX 3080
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Processing Time vs. Video Length
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Figure 5: Computational Performance Scaling

Table 9: Hardware Requirements and Performance Specifications

Hardware

Processing Speed Memory Usage Energy Cost per
Configuration (fps) (GB) Consumption (W) Hour (%)
NVIDIA RTX 4090  23.4 3.2 320 0.12
NVIDIA RTX 3080 18.7 2.8 280 0.09
NVIDIA RTX 2080 14.2 2.1 250 0.07
Ti
Tesla V100 19.8 4.1 400 0.15
CPU-only 19- 23 1.4 125 0.03
12900K)

4.4 Ablation Studies
Analysis

and Component

Dissecting the contribution of each component
within the proposed SDEM-+IPRM model to its
overall erformance.  The  "Full  Model

OOk -

Academy Journal of Science and Engineering 19(5)2025

(SDEM-+IPRM)" serves as the baseline, achieving
optimal performance with an AUC of 0.967 and an
F1-Score of 0.891. Removing the Spectral Dynamic
Entropy Module (SDEM Only) results in a
significant performance drop of -0.044 AUC and -
0.057 F1, highlighting the strong spatial-temporal
analysis capabilities of SDEM. Similarly, relying
solely on the Inter-Phoneme Relationship Module
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(IPRM Only) leads to an even larger degradation (-
0.080 AUC, -0.093 F1), underscoring the crucial
role of cross-modal consistency in deepfake
detection. Further ablations within SDEM reveal
that frequency analysis (SDEM w/o FFT) and
entropy quantification (SDEM w/o Entropy) are
essential, with their absence causing substantial
performance declines. Within IPRM, the attention
mechanism proves critical (IPRM w/o Attention),
as its removal results in the largest performance

drop (-0.133 AUC, -0.129 F1), emphasizing its
importance in capturing multi-scale temporal
patterns. Lastly, replacing Bayesian fusion with
linear fusion and adaptive thresholding with a
single threshold also leads to notable performance
reductions, confirming the benefits of these
advanced techniques as represented in Table 10:

4.4.1 Individual Component Contribution
Analysis

Table 10: Comprehensive Ablation Study Results

Model Configuration AUC F1-Score AAUC AF1 Key Insights
Full Model (SDEM+IPRM) 0.967 0.891 - - Optimal performance
SDEM Only 0.923 0.834 -0.044  -0.057 Strong spatial-temporal analysis
IPRM Only 0.887 0.798 -0.080  -0.093 Cross-modal consistency crucial
SDEM w/o FFT 0.892 0.801 -0.075  -0.090 Frequency analysis essential
SDEM w/o Entropy 0.908 0.821 -0.059  -0.070 Entropy quantification important
IPRM w/o Attention 0.834 0.762 -0.133  -0.129 Attention mechanism critical
Linear Fusion Only 0.941 0.856 -0.026  -0.035 Bayesian fusion beneficial
Single Threshold 0.933 0.847 -0.034  -0.044 Adaptive thresholding valuable
i.Lip corners and contour: 73.2%
discrimination power
4.4.2 Landmark Subset Sensitivity Analysis ii.Jaw articulation points: 68.7%
discrimination ~ power. This

FaceMesh Landmark Importance (468 points)

High Contribution (> 0.8)
Medium Contribution (0.4-0.8)
Low Contribution (< 0.4)

Jaw articulation points
68,7%

Figure 6: Spatial Landmark Contribution
Heatmap

Critical Regions as shown in the Figure 6:

indicates that the motion of the
jaw 1s a key feature being
analyzed, with a high confidence
score. This is a crucial area for
detecting inconsistencies between
a synthetic face and a real one, as
jaw motion is often difficult to
replicate naturally.

iii.LEye  corner  dynamics: 61.4%
discrimination power, this refers
to the movement of the eye
corners, which can be subtle but
informative. The score indicates
this is another important feature.

iv.Nostril boundary: 45.8%
discrimination power, the motion
or shape of the nose boundary is
also being analyzed, although
with a lower score compared to
the jaw and eyes.
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4.4.3 Frequency Domain Analysis Deep
Dive

Authentic Videos (Orange): The orange data
points show a smooth, continuous decrease in
magnitude as frequency increases. This "1/f-
like" as indicated in the Figure 7 behavior is
characteristic of natural, biological signals like
human motion, indicating a wide range of
motion frequencies without sharp cutoffs. The
labels note Authentic Mouth motion and
Energy conservation model.

Synthetic Videos (Blue): The blue data points
show a different pattern. They are discrete and
non-continuous. The labels note Synthetic
Videos (irregular signals). The sharp drop-offs
at certain frequencies (e.g., around 8 Hz, 12 Hz,
and 15 Hz) suggest an unnatural, potentially
interpolated, or a model-generated motion that
lacks the natural smoothness of a real face. This
distinct spectral signature is a strong indicator
of synthetic content.

Power Spectral Density Comparison

Magnitude (dB)
|

s at3.2Hz 7 6Hz 114Hz e @

) Authentic Videos (smooth decay)
® Synthetic Videos (imegular spikes)

8
Frequency (Hz)

Figure 7: Spectral Characteristics of Authentic Vs. Synthetic Content

Key Observations:

- Authentic: -6 dB/octave rolloff

Synthetic:
7.8Hz, 11.4Hz

Anomalous peaks at 3.2Hz,

- Energy concentration: Real (0-4Hz), Fake
(distributed)

In plain language, authentic human motion
behaves like a smooth, continuous rhythm,
whereas synthetic motion reveals unnatural
jumps in energy at specific frequencies a tell-
tale sign of computer-generated faces.

4.5

artifacts. Under high-quality H.264 compression
(CRF 18), the performance degradation is minimal
(-0.4% AUC, -0.4% F1-Score), indicating robust
detection in near-original quality videos. As
compression increases (CRF 23, 28, 35), a gradual
but manageable degradation is observed, with the
most significant drop occurring at very low quality
(CRF 35), where AUC decreases by -10.4% and F1-
Score by -10.4%. This trend highlights the inherent
challenge posed by severe compression, which can
obscure subtle deepfake artifacts.

This shows that while the detector is strong against
realistic degradations like compression or blur, it
can still be weakened by deliberate pixel-level

Robustness Evaluation Under attacks, emphasizing the need for future
Adversarial Conditions “adversarially trained” detectors.
The results as shown in Table 11 demonstrate the
model's remarkable resilience to compression
Academy Journal of Science and Engineering 19(5)2025 Page |24
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4.5.1 Compression Artifact Resilience

Table 11: Performance under Various Compression Scenarios

Compression F1- Degradation
Method Quality Level AUC  Score (%) Mitigation Strategy
H.264 CRF 18 (High) 0.963 0.887 -0.4% Minimal impact
H.264 CRF 23 0.948 0.869 -2.5% Adaptive thresholding
(Medium)
H.264 CRF 28 (Low) 0921 0.834 -6.4% Enhanced
preprocessing
H.264 CRF 35 (Very 0.887 0.798 -10.4% Frequency domain
Low) emphasis
H.265 CRF 23 0.952 0.874 -1.9% Codec-specific
adaptation
VP9 CRF 25 0.945 0.865 -2.9% Universal robustness

4.5.2 Adversarial Attack Resilience

Performance vs. Attack Strength

As shown in the Figure 8, the dashed red line
shows a strong, almost linear, negative
correlation. As the attack strength (€)
increases, the performance (AUC Score) of the

model decreases significantly. This indicates
that the model is vulnerable to Fast Gradient
Sign Method (FGSM) adversarial attacks. A
small perturbation (e=0.015) is enough to
degrade the AUC score from a high of around
0.95 to below 0.75, showing that the model's
decision boundaries are not robust to
maliciously crafted noise.

Performance vs. Attack Strength

0.95

0.90 4

AUC Score
o
&
L d

.
’S

0.75
0.00

002

003 0.04 0.05

FGSM Attack Epsilon

Figure 8: Adversarial Robustness Analysis

Attack Type Analysis:

- FGSM (Lx): Robust up to € = 0.02

- PGD (L2): Maintains > 85% performance
- C&W: Most challenging, 12% degradation
- Universal Perturbations: 8% degradation

The preceding quantitative analyses establish

the technical robustness and interpretability of
the proposed system. However, these numerical
outcomes represent only part of the broader
forensic context. In the following discussion,
we interpret the findings within operational,
societal, and ethical frameworks highlighting
the implications of physiolinguistic deepfake
detection for real-world media verification,
digital integrity, and policy formulation.
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4.6 Real-World Deployment Considerations
4.6.1 Operational Performance Metrics

Table 12 provides a crucial assessment of the
deepfake detection system's performance across
various production deployment scenarios, offering

insights into its scalability, efficiency, and resource
utilization in real-world applications. The Cloud
GPU Cluster scenario demonstrates the highest
throughput (847 videos/hour) and lowest latency
(4.2 seconds), maintaining excellent accuracy
(96.8%), making it ideal for high-volume, real-time
processing demands, albeit with significant GPU
resource utilization

Table 12: Production Environment Performance Assessment

Throughput Accuracy Resource
Deployment Scenario (videos/hour) Latency (seconds) Maintenance Utilization
Cloud GPU Cluster 847 4.2 96.8% 78% GPU,
34% CPU
Edge Computing Device 156 23.1 94.2% 89% GPU,
67% CPU
Mobile Implementation 34 106.3 91.7% 95% CPU,
2.1GB
RAM
Batch Processing 1,240 2.9 97.1% 92% GPU,
28% CPU
4.6.2 False Positive Analysis and Mitigation significant contributors, at 30% and 25%
respectively.  Both  conditions  introduce
The results in the Figure 9 indicate that the distortions that can be misinterpreted as

system struggles most with Occlusion
Artifacts, which account for 35% of false
positives. This shows that features being
occluded (e.g., by hands, hair, or poor
lighting) cause the model to incorrectly flag
the video as synthetic.

Lighting Changes and Motion Blur are also

artifacts of synthetic generation.

Heavy Compression (20%) and Low Quality
(13%) also contribute to false positives,
indicating that a loss of image information can
lead to misclassification. These results
highlight the robustness challenges of the
system under non-ideal real-world conditions

False Positive Distribution

Low Quality

Heavy Compress

Motion Blur

Image Conditions

Lighting Changes

Occlusion Artifacts

30%

15 20 25 30 35 40
Percentage of FPs (%)

Figure 9: False Positive Characterization
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Mitigation Strategies:

- Quality Assessment: Pre-filtering reduces
FPs by 23%

- Temporal Voting: Multi-frame consensus
reduces FPs by 31%

- Confidence Thresholding: Adaptive cutoffs
reduce FPs by 18%

- Ensemble Methods: Multiple model voting
reduces FPs by 27%

This comprehensive experimental evaluation
demonstrates the superior performance and
practical viability of our dual-framework
detection methodology, establishing new
benchmarks for synthetic media detection
across diverse operational scenarios while
maintaining computational efficiency suitable
for real-world deployment.

4.7 Experimental Framework and Data
Preprocessing Pipeline

This section presents a comprehensive
empirical evaluation of our proposed dual-
framework detection methodology,
incorporating both  Spatiotemporal  Drift
Entropy Mapping (SDEM) and Inverse
Phoneme Reconstruction Modeling (IPRM)
components. Our experimental protocol
establishes rigorous benchmarking against
established  detection paradigms  while
ensuring reproducible performance metrics
across diverse manipulation scenarios.

4.7.1 Four-Stage Data
Architecture

Processing

The preprocessing pipeline implements a
sophisticated multi-tier approach optimized
for biomechanical landmark extraction and
cross-modal ~ feature  alignment. Our
framework processes video sequences through
four distinct computational stages:

Stage 1: Intelligent Frame Sampling and
Temporal Segmentation

Video sequences undergo adaptive temporal
sampling utilizing scene change detection
algorithms to identify keyframes containing
maximal facial motion information. The
sampling strategy varies based on sequence
characteristics:

o High-motion sequences (optical flow
magnitude > 2.5 pixels/frame): Uniform
sampling at 15 fps

o Low-motion sequences (optical flow
magnitude < 2.5  pixels/frame):
Adaptive sampling targeting motion
peaks

e Compressed sequences: Enhanced
sampling density around detected
manipulation boundaries

Stage 2: Precision Facial Landmark

Extraction

MediaPipe FaceMesh processing extracts N =
468 anatomical landmarks per frame with sub-
pixel accuracy. The extraction process
implements multi-scale detection cascades:

Facial Detection Confidence Hierarchy:

High Confidence (= 0.95): Full 468-point
extraction

Medium Confidence (0.75-0.94): Robust 68-
point subset

Low Confidence Whole-frame

fallback analysis

(< 0.75):

Stage 3: Geometric Normalization and
Coordinate Standardization

All extracted landmarks undergo affine
transformation normalization according to the
enhanced formulation:
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Xmin)

_ - _
Xnormalized - ¥ (Xmax —Xmin +£)ere €=

le-8 prevents division-by-zero instabilities.
Additional preprocessing includes:

i.  Procrustes alignment: Eliminates
pose variation through optimal rigid
transformation

ii.  Scale Inter-ocular
distance standardization to 100 pixels

ii. =~ Temporal smoothing: Gaussian
kernel filtering (o6 = 0.5) reduces

acquisition noise

normalization:

Stage 4: Feature Extraction:

The final stage computes the features used for
the end task. ". Cross-Modal Synchronization is
a step that aligns these video-derived features
with an audio stream as seen in Figure 10,
ensuring that the features are temporally
consistent with the corresponding phonemes or
acoustic events.

Four-Stage Process Flow Pipeline

Input Video Stream (T frames)

| STAGE 1: Temporal Processing

Scene Change Detection

— [ Optical Flow Analysis | e | Adaptive Frame Sampling (15 fps)

___________________________________

STAGE 2: Landmark Extraction

_______________________________________________

MediaPipe FaceMesh | - | Confidence Assessment

— | 468-Point Landmark Matrix

___________________________________

| STAGE 3: Normalization

_______________________________________________

Procrustes Alignment -

Scale Normalization

— Temporal Smoothing (¢=0.5)

___________________________________

| STAGE 4: Feature Extraction

_______________________________________________

E LSDEM AlgcrithmJ — [IPRMAIgcrithmJ — LCross-MudaI SynchronizanonJ

___________________________________

_______________________________________________

Figure 10: Pre-processing Pipeline Architecture

4.7.2 Experimental Dataset Configuration

Our evaluation encompasses six
comprehensive benchmark datasets
representing diverse manipulation techniques
and compression scenarios, expanding upon the
initial overview in Table 3 resulting in the Table
13. This comprehensive specification highlights

the breadth and depth of the evaluation, ensuring
that the model's performance is assessed across a
wide array of deepfake characteristics. The
inclusion of FaceForensicst+, DFDC, Celeb-DF
v2, WildDeepfake, and DeeperForensics covers
diverse manipulation categories (e.g., DeepFakes,
Face2Face, various GAN architectures, real-world
scenarios, DF-VAE, FSGAN), resolution
distributions (from 144p to 4K), and compression
levels (c0, c23, c40, various, high quality, heavy
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compression,

lossless). The

detailed duration

statistics (mean and standard deviation) for each

dataset provide further context on the temporal
characteristics of the videos.

Table 13: Comprehensive Dataset Specifications for Experimental Validation

Authentic Synthetic Manipulation Resolution Compression Duration
Dataset Videos Videos Categories Distribution Levels Statistics
FaceForensics++ 50,000 50,000 DeepFakes, 240p-1080p  ¢0, c23, c40 u=14.2s,
Face2Face, 6=6.8s
FaceSwap,
Neural Textures
DFDC 104,500 23,654 8 GAN 480p-1080p  Various p=10.7s,
architectures 0=4.2s
Celeb-DF v2 590 5,639 Celebrity 256p-1080p  High quality — p=13.1s,
deepfakes 0=9.7s
WildDeepfake 3,805 3,509 Real-world 144p-720p Heavy u=8.4s,
scenarios compression  0=3.1s
DeeperForensics 50,000 10,000 DF-VAE, 540p c23, c40 pu=12.8s,
FSGAN 0=5.4s
Custom 1,200 800 State-of-the-art  720p-4K Lossless pu=20.3s,
Challenge methods 0=8.9s
component employs optimized parameters

4.8 Algorithmic Parameter Configuration
and Implementation Details

4.8.1 SDEM Algorithm Optimization

The Spatiotemporal Drift Entropy Mapping

derived through extensive grid search analysis
as presented in the Table 14, The "Temporal
Window (T)" of 180 frames is selected after
optimizing within a range of [60, 300] frames,
balancing the need for sufficient Fast Fourier
Transform (FFT) resolution to capture subtle
frequency domain artifacts against computational
cost.

Table 14: SDEM Algorithm Hyperparameter Configuration

Optimization Performance

Parameter Value Range Selection Criterion Impact
Temporal 180 frames [60, 300] FFT  resolution vs. Critical
Window (T) computational cost
Landmark Subset 468 (full [68, 468] Spatial granularity High
N) topology)
FFT Window Hamming Hamming, Hanning, Spectral leakage Medium
Function Blackman minimization
Entropy 2.847 [1.5,4.0] ROC curve Critical
Threshold (t_H) optimization
Spectral 0.1-15 Hz [0.05-25 Hz] Physiological motion High
Frequency Range bounds
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Computational Cost vs. Window Length

Figure 11 plot shows a nearly Ilinear
relationship between the two variables. As the
window length increases, the computational
cost (time) also increases proportionally. This

is an expected result, as more data points
(frames) require more processing. The linear fit
suggests that the algorithm's complexity scales
linearly with the input data size, which is
efficient and predictable.

Computational Cost vs. Window Length

240

Figure 11: SDEM Parameter Sensitivity Analysis

Optimal Point: T = 180 frames (AUC = 0.943,
Time = 5.25)

4.8.2 IPRM Network Architecture
Specifications

The Inverse Phoneme  Reconstruction
Modeling framework implements a

sophisticated sequential architecture optimized
for cross-modal consistency analysis:

Network Architecture:

i.  Input Layer: 2W|M| = 2x16x20 = 640
dimensional vectors

ii. ~ BILSTM Layers: 2 layers, 256 hidden
units each, dropout = 0.3

iii.  Attention Mechanism: Multi-head
attention, 8 heads, 64-dimensional
keys

iv.  Output Layer: Softmax over 42 IPA
phoneme classes

v.  Training: Adam optimizer, learning
rate = le-4, gradient clipping = 1.0

Table 15 delineates the architectural and training
configurations for the Inter-Phoneme Relationship
Module (IPRM), a critical component designed to
assess the consistency between audio and visual
speech. The "Sliding Window (W)" of 16 frames is
chosen as the optimal size to capture the temporal
context of individual phonemes, ensuring that the
module has sufficient information to analyze the
dynamics of lip movements during speech. The
module utilizes 20 specific mouth landmarks, which
are crucial for precisely tracking lip articulation
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Table 15: IPRM Architecture and Training Configuration

Component Specification Justification Memory Usage
Sliding Window (W) 16 frames Phoneme temporal context 0.84 MB
Mouth Landmarks ( M ) 20 points
BiLSTM Hidden Units 256 x 2 layers Sequence modeling capacity 2.3 MB
Attention Heads 8 heads Multi-scale temporal patterns 1.1 MB
Phoneme Classes 42 TPA symbols English language coverage 0.02 MB

Batch Size 32 sequences GPU memory optimization Variable

4.8.3 Statistical Fusion Framework

The Bayesian decision fusion employs
maximum  likelihood  estimation  with
regularized covariance matrices to prevent
overfitting:

Zregularized = (1 - A)Zempirical + Al

where A = 0.01 provides numerical stability.
The fusion weights are computed through 10-
fold cross-validation:

Optimal Fusion Weights:
0.647,wy = 0.353,b = —1.234

Wy =

4.9 Limitation On the Dual Framework
Approach

The framework requires reliable face detection
and audio preprocessing; performance falls for
videos with severe occlusion, very low
resolution, or extreme compression. The
phoneme predictor depends on language
coverage and may require retraining or
adaptation for underrepresented languages.
Finally, moderate adversarial perturbations
can degrade performance, motivating future
work on adversarial training and detector
hardening.

4.9.1 Societal and ethical implications

Improved detection tools can mitigate harms
from malicious synthetic media, but they are
not definitive evidence. Detection outputs
should be used alongside metadata analysis,
provenance tracing, and human review. We
also recognize privacy concerns inherent to
processing facial and audio data.

5.0 Conclusion

This research presents a dual-framework
integrating  Spatiotemporal Drift Entropy
Mapping (SDEM) and Inverse Phoneme
Reconstruction Modeling (IPRM) for advanced
detection of Al-synthesized facial media.
Through quantitative evaluation on benchmark
datasets, the framework achieved an AUC of
0.967 on FaceForensicst+ and 0.943 on
DFDC, significantly exceeding single-module
baselines (SDEM = 0.923, IPRM = 0.887) and
competitive deep architectures such as
EfficientNet (AUC = 0.999). Confusion-matrix
and error-characterization analyses confirm that
SDEM effectively isolates micro-temporal drift
and spectral inconsistencies in facial motion,
while IPRM captures subtle audio-visual
desynchronization across phoneme transitions,
jointly reducing both false positives and false
negatives in cross-dataset testing.
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Despite its robustness under compression,
occlusion, and moderate adversarial
perturbations, the framework’s performance
decreases for extremely low-resolution videos
and languages outside the IPRM phoneme
model’s training distribution. Future work will
therefore focus on adversarial hardening,
cross-lingual phoneme adaptation, and
deployment-oriented optimization for real-
time forensic pipelines. The physiolinguistic
interpretability of this system offers a
transparent and reproducible foundation for
trustworthy Al-forensics, with direct relevance
to digital-authenticity verification,
misinformation  mitigation, and media-
forensics policy frameworks.
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