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1.0    INTRODUCTION 

The dynamic response of elastic structures 

under partially distributed masses moving at 

varying velocities is a complex problem with 

significant implications for engineering design 

and safety (Ogunbamike, 2012; Ali & Hawwa, 

2023). In literature, this behavior of elastic 

structures subjected to moving loads has almost 

exclusively been investigated under the 

assumption of constant load velocities (Fryba, 

1972; Oni & Ogunbamike, 2010; Hsu, 2020; 

Yalin et al., 2020; Vaccaro et al., 2021; Sharma 

2021; Heshmat & Elshabraway, 2021; Musa et 

al., 2022; Ogunbamike & Owolanke, 2022; 

Zhao et al., 2023; Baddyo et al., 2024; Bao et  

 

 

al., 2024; Liu, 2024; Kanwal et al., 2024; Andi 

et al., 2024; Jimoh et al., 2025). Despite the 

prevalence of moving loads with variable 

velocities in the real world applications, little 

attention has been received in literature (Oni & 

Ogunbamike, 2018; Pireda et al., 2021; Koc 

2021; Can et al., 2022; Deng et al., 2022; 

Sobhanirad & Hassani, 2023).  This may be as 

a result of non-linearity effects, complicating 

analysis and the intricate space-time 

dependencies involved in such problems. In 

particular, even when the inertial effects of the 

moving load are disregarded, analytical 

solutions involving integral transforms remain 
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intractable and cumbersome Moradi et al., 

(2021). Several practical concerns such as 

vehicle acceleration and braking, time 

dependent factors, terrain irregularities like 

uneven surfaces, bumps or inclines, taking off 

and landing of air-crafts on runway  where 

movement varies as a function of time, has 

heightened the need to study the behavior of 

structures subjected to loads moving with 

variable velocities.  This class of problem was 

first tackled by Lowan (1935) who solved the 

problem of transverse oscillations in beams 

subjected to moving loads with variable 

velocity. Much later, Andi et al., (2014) treated 

the dynamic effects on the transverse motion of 

a simply supported uniform beam of a load 

moving at variable speed. The work of Jimoh et 

al., (2018) represents a recent advancement in 

this field of study. Specifically, they undertook 

the analysis of response of non-uniformly 

prestressed Timoshenko beam under 

distributed moving load moving at variable 

velocity. It was found that the moving 

distributed force is not an upper bound for the 

accurate solution of the moving distributed 

mass problem which shows that the inertia term 

must be considered for accurate assessment of 

the response to moving distributed load. Years 

later, Challah et al., (2020) analyzed the 

vibration of continuous beams finite element 

method based upon the Euler-Bernoulli 

assumptions. They calculated the transverse 

vibration period for each position of the 

intermediate support for different end 

constraints. While, Usman et al., (2020) 

considered the vibration of beam subjected to 

moving force and moving mass. Jiang et al., 

(2021) investigated the dynamic responses of 

railway track multi-layer beam structure 

system under a moving load, which is 

connected by Winkler springs. In their work, 

they used modal superposition method to 

obtain the displacement formulas for both 

forced and free vibration stages of the finite 

beam. Ogunbamike (2021) studied the dynamic 

analysis of a clamped-clamped beam under 

moving distributed load. The solution 

technique is based on the generalized finite 

integral transformation and a modification of 

the Struble’s asymptotic technique. Analytical 

solutions showed that higher values of axial 

force, damping due to strain resistance and 

rotary inertia reduce the response amplitudes of 

the beam. Recently, Santos (2024) used finite 

element formulation to solve the dynamic 

analysis of Euler-Bernoulli beam subjected to 

moving loads. The nonlinear deformation and 

vibrations of beams using the Extended 

Rayleigh-Ritz method (ERRM) was studied by 

Jiang et al., (2022). The dynamic response of 

beam supported by finite-thickness elastic 

under the moving load was studied by Ma et al., 

(2024). In a more recent development, Ajijola 

(2025) examines the transverse displacement 

and rotation of a prestressed damped shear 

beam supported by a Vlasov foundation when 

subjected to a moving load travelling at a 

constant velocity. However, in all the 

aforementioned authors, the interplay between 

velocity variation and variable foundation 

stiffness which can lead to complex dynamic 

behavior and affect the structural stability were 

neglected. In this paper, apart from presenting 

the effect of variable velocity which can cause 

dynamic amplification, leading to increased 

stresses and deflections, the main objective of 

the present study is to analyze the effect of the 

time-dependent stiffness of the elastic structure 

which changes the natural frequency and 

affecting its dynamic response of the structure. 

2.0    PROBLEM FORMULATION 

The governing equation for the uniform 

Rayleigh beam on variable elastic foundation 

under an arbitrary partially distributed moving 

load is considered. The differential equation of 

the motion is given by  
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in which 0,,,, RVNEI  and FZ are, flexural rigidity, axial force of the beam, mass per unit 

length, beam deflection, rotatory inertia factor and variable elastic foundation respectively. 

Moreover, P represents the magnitude of the distributed load given by 
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in which, gPf , and 
2

2

dt

d
are the continuous moving force acting on the beam model, acceleration 

due to gravity and the convective acceleration operator. The boundary conditions are given as  
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where 0x  is the point of application of force ),( txP at the instance 0t , c  is the initial velocity, a   

is the constant acceleration of motion and  )(tfxH   is the Heaviside function. 

substituting Eqs. (2) and (4) into Eq. (1) and taken into consideration Eq. (6) to obtain 
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where the variable elastic foundation )34(),( 32 xxxKtxZF   
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3.0    METHOD OF SOLUTION 

The dynamic behaviour of the beam due to a partially distribute moving load is computed by using 

the property of Heaviside function to express it in series form and then adopt the  Fourier sine 

integral transform which is defined as 
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After implementing the Fourier transform on Eq. (7) and imposing the boundary conditions 

indicated in Eq. (5), one obtains 
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The above integrals cannot be easily computed due to the non-differentiability of the Heaviside 

function at 0x and the singularity involved. In order to handle the singularities in the integrals, 

we use the Fourier series representation for the Heaviside unit step function 
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Simplifying integral in Eq. (11) in conjunction with (12), we have 
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Equation (13) is the fundamental equation of our problem when the beam is resting on variable 

foundation stiffness under travelling distributed loads. In what follows, two special cases of (13) 

are discussed.  

 

3.1    Closed Form Solution 
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This is an approximate model which assumes the inertia effect of the moving partially distributed 

mass as negligible. Thus, equation (14) after some rearrangements, can be written as  
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where      
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Solving Eq. (15) in conjunction with the initial condition, the solution is given by 
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Eq. (18) represents the transverse displacement response to a partially distributed force moving at 

variable velocities of a beam with a variable foundation constant. 
    

3.1.2. Case II. If the inertia term is retained, then 00  . This is termed as moving mass problem. 

In this case the solution of the entire equation (13) is required. The problem does not have an exact 

solution, hence using a modification of Struble| technique discussed in Oni & Ogunbamike (2018), 

equation (13) is simplified and rearranged to take the form 
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Firstly, we shall consider the homogeneous part of equation (19) and obtain a modified frequency 

corresponding to the frequency of the free system. An equivalent free system operator defined by 

the modified frequency then replaces equation (19).  Considering a parameter 10  for any 

arbitrary mass ratio 0 defined as 

    0

0
0

1 


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


 

      (20) 

It is then clear that 

     ......)()(1 2
0000   oo       (21) 

When 0 is set to zero in equation (19), a case corresponding to the case when the inertia effect of 

the mass of the system is neglected and the solution of (19) is given as 

      mkf tCostmV  0,                        (22) 

0
 and m are constants. Since 10  , Struble’s technique requires that the asymptotic solution 

of the homogeneous part of equation (19) which can be written as  

             00 ,,,,  otmVtmtCostmtmV kf         (23)   

where  tm, and  tm,  are slowly varying functions of time.   

Substituting equation (23) and its derivatives into the homogeneous part of (19) and taking into 

account (21) while retaining terms to )( 0O , one obtains 
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The variational part of the equation describing the behaviour of ),( tm and  tm, during the 

motion of the distributed mass is extracted. Neglecting terms that do not contribute to the 

variational equation and taking into account the trigonometric identities, Eq. (24) reduces to  
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The variational equations are obtained by setting the coefficients of   tmtCos kf ,  and 

  tmtSin kf , in Eq. (25) to zero. Thus   
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Solving equations (26) and (27) gives 
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respectively, where m and m  are constants.   

The first approximation to the homogeneous system when the mass effect is considered is 
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Solving equation (32) using method of variation of parameters technique in conjunction with the 

initial condition, one obtains expression for  tmV ,  

    

      )33(
L

mSin 
2

1

242424

242

2

42

2

42

2

4

2

2

42
1

24

2424242

2

4

2

2

42

2

42

2

4

2
),(

2
0

2
22

0

2
21

0

2
1

1
0

2
12

0

2
22

0

2
21

0

2
1

1
0

2
11

0

2
1

1
0

2
12

0

2
22

0

2
21

0

2
1

1
0

2
12

0

2
22

0

2
2

1 1

2
0

xtmCostmCos

Cosm

a

b
Sc

a

b
Cos

a

b
Cc

a

b
Sin

a

b
Sc

a

b
Cos

a

b
Cc

a

b
Sin

a

atb
Sc

a

b
Cos

a

atb
Cc

a

b
Sin

a

atb
Sc

a

b
Cos

a

atb
Cc

a

b
Sin

tCos
tmSintmSin

a

b
Sc

a

b
Sin

a

b
Cc

a

b
Cos

a

b
Cc

a

b
Cos

a

b
Sc

a

b
Sin

a

atb
Cc

a

b
Cos

a

atb
Sc

a

b
Sin

a

atb
Sc

a

b
Sin

a

atb
Cc

a

b
CostSin

gL
L

txV

mmmm
mm

mm

mm

mm

mmmm
mm

mmm
mm













































































































































































































































































































































 

which represents the dynamic response to a partially distributed mass moving with non-uniform 

velocity of a simply supported beam on a variable foundation constant.  

 

4.0    NUMERICAL RESULTS AND  

         DISCUSSION 

In order to illustrate the preceding analysis, an 

elastic beam of length m150 is considered. The 

mass per unit length of the beam

mkg /291.2758 , the modulus of elasticity  

mNE /101.3 10  and 431087698.2 mI  . 

A partially distributed load travels along the 

beam with velocity   1128.8  mv , the values 

of the foundation modulus is varied 0N/m3 and 

the values of rotatory inertia correction factor 

R0 is varied from  5.0  and 5.5 . 

Figure 5.1 displays the displacement response 

of a beam to moving partially distributed forces 

for various values of foundation stiffness  K  
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and fixed values of axial force N  and rotatory 

inertia correction factor 5.00 R . The figure 

shows that as the foundation stiffness K

increases, the response amplitude of the beam 

decreases. Similar results are obtained when the 

beam is subjected to moving partially 

distributed masses as shown in Figure 5.3. 

Figure 5.2 illustrates that for values of axial 

force, and fixed values of foundation stiffness 

and rotatory inertia  correction factor, the 

deflection profile of the vibrating structure is 

reduced The same results were obtained when 

the elastic is transverse by a partially 

distributed mass, as indicated in Figure 5.4. In 

Figure 5.5, the response of the beam to partially 

distributed forces values of rotatory inertia 

correction factor   and for fixed value of 

foundation stiffness and axial force. It is seen 

that the deflection of the beam decreases with 

the increase in the rotatory inertia correction 

factor. The same behavior characterizes the 

deflection profile of the uniform beam when it 

is traversed by moving partially distributed 

masses as shown in Figure 5.6. Finally, Figure 

5.7 depicts the comparison of the transverse 

displacement response of moving partially 

distributed force and moving partially 

distributed mass of a Rayleigh beam traversed 

by a moving load travelling at variable velocity 

for fixed values of foundation stiffness, axial 

force and rotatory inertia correction factor. 
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Figure 3. Transverse displacement of the simply supported beam traversed by a moving 

partially distributed force moving at variable velocities for various N and fixed
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Figure 4. Transverse displacement of the simply supported beam traversed by a moving 
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Figure 5. Response of the simply supported beam traversed by a moving partially 

distributed force moving at variable velocities for various 0
R and fixed )20000(),40000( NK  

 

 

 

 
Figure 6. Response of the simply supported beam traversed by a moving partially 
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Figure 7. Comparison of the displacement response of moving partially distributed force 

and moving partially distributed mass moving at variable velocities for fixed values of 

foundation stiffness, axial force and rotatory inertia correction factor. 

 

5.0    CONCLUSION 

A close form solution is presented for the 

displacement response of a uniform beam 

under the actions of partially distributed 

masses moving with variable velocity. The 

study demonstrates the critical influence of 

time-dependent stiffness and velocity 

variation on the dynamic response of elastic 

structures. The analytical approach employed 

provides valuable insights into the complex 

interactions between moving masses, 

structural parameters, and dynamic behavior. 

The findings of this research have significant 

implications on the design and vibration 

control of elastic structures subjected to 

dynamic loads, highlighting the need for 

more accurate and robust design guidelines. 

By shedding light on the dynamic response of 

elastic structures, this study contributes to the 

advancement of structural engineering, 

vibration analysis, and related fields, 

ultimately enhancing the safety, durability, 

efficiency, and reliability of engineering 

systems. 
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