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Abstract
This study examines the dynamic response of uniform beam under the action of partially distributed
moving masses with variable velocity. Utilizing an analytical approach, the research investigates the
impact of variable foundation stiffness, velocity variation, and structural parameters on dynamic
behaviour. The results reveal significant effects of variable foundation stiffness and velocity variation
on structural vibration and stability. These findings contribute to the development of more accurate
design guidelines and effective vibration control strategies for elastic structures under dynamic loads.
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1.0 INTRODUCTION

The dynamic response of elastic structures
under partially distributed masses moving at
varying velocities is a complex problem with
significant implications for engineering design
and safety (Ogunbamike, 2012; Ali & Hawwa,
2023). In literature, this behavior of elastic
structures subjected to moving loads has almost
exclusively been investigated under the
assumption of constant load velocities (Fryba,
1972; Oni & Ogunbamike, 2010; Hsu, 2020;
Yalin etal., 2020; Vaccaro et al., 2021; Sharma
2021; Heshmat & Elshabraway, 2021; Musa et
al., 2022; Ogunbamike & Owolanke, 2022;
Zhao et al., 2023; Baddyo et al., 2024; Bao et

al., 2024; Liu, 2024; Kanwal et al., 2024; Andi
et al., 2024; Jimoh et al., 2025). Despite the
prevalence of moving loads with variable
velocities in the real world applications, little
attention has been received in literature (Oni &
Ogunbamike, 2018; Pireda et al., 2021; Koc
2021; Can et al., 2022; Deng et al., 2022;
Sobhanirad & Hassani, 2023). This may be as
a result of non-linearity effects, complicating
analysis and the intricate  space-time
dependencies involved in such problems. In
particular, even when the inertial effects of the
moving load are disregarded, analytical
solutions involving integral transforms remain
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intractable and cumbersome Moradi et al.,
(2021). Several practical concerns such as
vehicle acceleration and braking, time
dependent factors, terrain irregularities like
uneven surfaces, bumps or inclines, taking off
and landing of air-crafts on runway where
movement varies as a function of time, has
heightened the need to study the behavior of
structures subjected to loads moving with
variable velocities. This class of problem was
first tackled by Lowan (1935) who solved the
problem of transverse oscillations in beams
subjected to moving loads with variable
velocity. Much later, Andi et al., (2014) treated
the dynamic effects on the transverse motion of
a simply supported uniform beam of a load
moving at variable speed. The work of Jimoh et
al., (2018) represents a recent advancement in
this field of study. Specifically, they undertook
the analysis of response of non-uniformly
prestressed  Timoshenko  beam  under
distributed moving load moving at variable
velocity. It was found that the moving
distributed force is not an upper bound for the
accurate solution of the moving distributed
mass problem which shows that the inertia term
must be considered for accurate assessment of
the response to moving distributed load. Years
later, Challah et al., (2020) analyzed the
vibration of continuous beams finite element
method based upon the Euler-Bernoulli
assumptions. They calculated the transverse
vibration period for each position of the
intermediate  support for different end
constraints. While, Usman et al., (2020)
considered the vibration of beam subjected to
moving force and moving mass. Jiang et al.,
(2021) investigated the dynamic responses of
railway track multi-layer beam structure
system wunder a moving load, which is
connected by Winkler springs. In their work,
they used modal superposition method to
obtain the displacement formulas for both
forced and free vibration stages of the finite

beam. Ogunbamike (2021) studied the dynamic
analysis of a clamped-clamped beam under
moving distributed load. The solution
technique is based on the generalized finite
integral transformation and a modification of
the Struble’s asymptotic technique. Analytical
solutions showed that higher values of axial
force, damping due to strain resistance and
rotary inertia reduce the response amplitudes of
the beam. Recently, Santos (2024) used finite
element formulation to solve the dynamic
analysis of Euler-Bernoulli beam subjected to
moving loads. The nonlinear deformation and
vibrations of beams using the Extended
Rayleigh-Ritz method (ERRM) was studied by
Jiang et al., (2022). The dynamic response of
beam supported by finite-thickness elastic
under the moving load was studied by Ma et al.,
(2024). In a more recent development, Ajijola
(2025) examines the transverse displacement
and rotation of a prestressed damped shear
beam supported by a Vlasov foundation when
subjected to a moving load travelling at a
constant velocity. However, in all the
aforementioned authors, the interplay between
velocity variation and variable foundation
stiffness which can lead to complex dynamic
behavior and affect the structural stability were
neglected. In this paper, apart from presenting
the effect of variable velocity which can cause
dynamic amplification, leading to increased
stresses and deflections, the main objective of
the present study is to analyze the effect of the
time-dependent stiffness of the elastic structure
which changes the natural frequency and
affecting its dynamic response of the structure.

20 PROBLEM FORMULATION

The governing equation for the uniform
Rayleigh beam on variable elastic foundation
under an arbitrary partially distributed moving
load is considered. The differential equation of
the motion is given by
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in which EI, N, &, V, R%and Z. are, flexural rigidity, axial force of the beam, mass per unit

length, beam deflection, rotatory inertia factor and variable elastic foundation respectively.
Moreover, P represents the magnitude of the distributed load given by

P(X,1) =P, (x,t){ —ldzv—(?’ﬂ @
g dt
P, (x,t) = MgH[x — f (t)] 3)
and
df 0 2d 00 (dfQ) @ d® 0
a2 o dt 'O 8x8t+( dt ) PYRITE 'O OX @)

. . d? . . . .
in which, P;, g and Pare the continuous moving force acting on the beam model, acceleration

due to gravity and the convective acceleration operator. The boundary conditions are given as

V(0,t) =V (L,t)=0; 0 (5)

VO V(L)
x> o

The distance covered by the load on the same structure at any given instance of time is given as
f(t) = x, +ct+1at? (6)
where x, is the point of application of force P(x,t)at the instancet =0, c is the initial velocity, a

is the constant acceleration of motion and H[x — f (t)] is the Heaviside function.
substituting Egs. (2) and (4) into Eg. (1) and taken into consideration Eg. (6) to obtain

0 0V (x,1)

8 (x,1)
El VN ox2ot2

oV (x,1) . oV (x,t)
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X

L2 V()

~ }z MgH[x— (x, +ct + 2 at?)]

where the variable elastic foundation Z_ (x,t) = K(4x—3x* + x%)

Academy Journal of Science and Engineering 19(2)2025 Page |53
BY * This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)




Dynamic Response of a Rayleigh Beam... Ogunbamike OK....

3.0 METHOD OF SOLUTION

The dynamic behaviour of the beam due to a partially distribute moving load is computed by using
the property of Heaviside function to express it in series form and then adopt the Fourier sine
integral transform which is defined as

vV (m,t) :;[V(x,t)sianﬂde )

with inverse

V(x,t):%iV(m,t)sinm—ﬁx

m=1

9)

After implementing the Fourier transform on Eq. (7) and imposing the boundary conditions
indicated in Eq. (5), one obtains
EIRV (m,t) +V, (m,t) — NRV (M, t) + £zR°R,V, (M, t) + K (4x+3x" + X}V (m, 1) + R, (t)

L
+2(c-+ AR, (1) + (¢-+ a0 Ry (1) +aR, (1) =Mg] H |~ (x, +ct+ fat”) sin M2 o
0

(10)
where
4 4L
N, = il f _[sin M i
L
0
2_2L
R, = mLf Isin M2 1

L
. m
R, = MjH[x—(xO +ct+Lat?)sin Tﬂxdx
0

V(x,t) . max
sin
oxot L
L
OV (x,1) . max
SRS:M_([H[X—(xOJrcH%atz)] Fva Uiy dx

)]GV(x,t) sin m7zzx dx
OX L
The above integrals cannot be easily computed due to the non-differentiability of the Heaviside

function at x = 0and the singularity involved. In order to handle the singularities in the integrals,
we use the Fourier series representation for the Heaviside unit step function
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Simplifying integral in Eq. (11) in conjunction with (12), we have
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Equation (13) is the fundamental equation of our problem when the beam is resting on variable
foundation stiffness under travelling distributed loads. In what follows, two special cases of (13)
are discussed.

3.1 Closed Form Solution
3.1.1. Case l. The differential equation describing the flexural vibration of a finite uniform beam

subjected to a moving partially distributed force may be obtained from (13) by setting y, =0. In
this case, we obtain

2_2 2_2 2 _2
(RO mL” +1 n(m,t)+l[ml_f (N+EImLZ j+K(4x—3x2+x3)}V(m,t)
u

MgL
mrzu

[cosT(x +ct+iat?) - cosm;r} (14)

This is an approximate model which assumes the inertia effect of the moving partially distributed
mass as negligible. Thus, equation (14) after some rearrangements, can be written as

V, (M, t) + 75,V (m,t) = {cosM X, +ct+iat?)— —1’"}
+ 7 A(y L (% ) ( ) (15)

where
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Solving Eg. (15) in conjunction with the initial condition, the solution is given by
V(x,t):%%i {S'n}’ { (% ) b+2at)+S|n(Zb§—c )S(% +S|n s( J;f:j
b +2at b b2 b,
+Cos ) ( ) ( ) (ng) Cos(4a —C )C(%) Cos( ) (‘bu\/%

i i : C t[ .
_S'”(%—%)S(TS—ZJ—Z;[Sln(mfz+ykft)—s|n(m7r—7/kft)]—(;Z/H{_s,n( b? . ) ( \/7a )
: +2at b2 b,+2at b2 b, +2at +2at
oo (%—COJS(QEJ +S'”(Z§‘C )C( N j Cos(fa—c )S( N +S|n( j
_ Eﬁ b b b, b2 b Cosmz
Cos(4a js(%) Sm(4a \,O)C(%)+COS(4a cojs(jfz}r o /1
" ﬁ [Cos(m—gt)+Cos(mr+ kg)]}(sin%x) (18)

Eq. (18) represents the transverse displacement response to a partially distributed force moving at
variable velocities of a beam with a variable foundation constant.

3.1.2. Case Il. If the inertia term is retained, then y, = 0. This is termed as moving mass problem.

In this case the solution of the entire equation (13) is required. The problem does not have an exact
solution, hence using a modification of Struble| technique discussed in Oni & Ogunbamike (2018),
equation (13) is simplified and rearranged to take the form
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_ Mgl {cos mL” (x, +Ct+1at?)— (-1)"*} (19)

2_2
mﬂ',u{Ro mLZ +1}

Firstly, we shall consider the homogeneous part of equation (19) and obtain a modified frequency
corresponding to the frequency of the free system. An equivalent free system operator defined by

the modified frequency then replaces equation (19). Considering a parameter &<1 for any

arbitrary mass ratio y,defined as

b= 20)
+ %o
It is then clear that
Zo=&flroE) +0Ed) +....] (21)

When & is set to zero in equation (19), a case corresponding to the case when the inertia effect of
the mass of the system is neglected and the solution of (19) is given as
V(m,t)=¥,Coslyt-%, | (22)

W, and A, are constants. Since &, <<1, Struble’s technique requires that the asymptotic solution
of the homogeneous part of equation (19) which can be written as

V (m,t)=¥(m,t)Cos|y t—x(m,t)]+ £V (m,t)+o(&, ) (23)
where ¥(m,t)and x(m,t) are slowly varying functions of time.
Substituting equation (23) and its derivatives into the homogeneous part of (19) and taking into
account (21) while retaining terms to O(¢&,), one obtains
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n_O p=0

()P Mcos@n+1A -1 cos(2n +1)7zLj cos(2n+1)z(x, +ct+§at2)}
[en+yLP-[(p+mP  [@n+DL] 2n+1

2% (p, YA P,t) coslyyt — A(p, )]~ 2% (p, 1)y sin [yt - %(pt)]{——Z > (2n+1)
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[(1) PHM cos@n+1)a -1 cos(2n+1)aL \cos(2n +1)7z(x, +ct+1 atz)}
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MgL
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The variational part of the equation describing the behaviour of ¥(m,t) and K(m,t)during the
motion of the distributed mass is extracted. Neglecting terms that do not contribute to the
variational equation and taking into account the trigonometric identities, Eq. (24) reduces to

2% (m, H)i(M, £) coslyyt — (M, 1) |- 29 (m, 1)y sin [yt — K(m, )|+ W (m, 1) coslyt — x(m, 1)]

2,.-2 2
+§OA{ c rgLﬂ ¥ (m,t)y2 cos[ykft—K(m,t)]}zo (25)

The variational equations are obtained by setting the coefficients of Cos|y,t—x(m,t)| and
sin|y, t—(m,t)]in Eq. (25) to zero. Thus
—29(m,t)y =0 (26)

and

(27)

2,-2_2 2
2‘P(m,t)§i(m,t)+§°—|‘[2‘1’(m,t)—C mz \P(m’t)y“}zo
4A, 8L

Solving equations (26) and (27) gives

e ——
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w(m,t)=H, (28)
and
c2m2r2y2
x(m,t) = ;ZOAL (1 1;17” ]t+Km (29)
1

respectively, where H_ and K are constants.
The first approximation to the homogeneous system when the mass effect is considered is

V(mt)=3,Cos[f,.t-K,] (30)
where
& (8L —c’m’z?yy

= 1-22 31
Brom 7kf{ 16( AL (31)

Hence the entire Eq. (19) can be written in the form

2
Vo (m,t)+ B2V (m,t) == 9 [cos@(x Fot+tat?)— (1) } (32)
m7A, L 2

Solving equation (32) using method of variation of parameters technique in conjunction with the
initial condition, one obtains expression forV (m,t)
_ )S(b ;2at) ( ; cojs +2a j
2
o 2m)

—

V(x,t ):% i;hg {Smﬂ {Cos(gz COJC(D\/%j +Si ”(2;
+Cos(%;—c0)c(%/%) Sm(% C )8(727;) Cos(i c) ( ) ( co)C

M el

;T 5

N [Sm(m;wﬂ t}Sln(m;r ﬂ t

+Cos(%§—co)s(%%)+8m(% C )C[b ;2at COS( j ( a +S|n( b COJC(T%ZJ

_Cos(%;—co)s(%ﬂ;) Sm(%—c )C(%’\/%)JFCOS( i_cj ( b, ) LCosmz
+ 5 [Cos(m;z—ﬁmmt%Cos(m;wﬂmmt)]}(sm TX)

which represents the dynamic response to a partially distributed mass moving with non-uniform
velocity of a simply supported beam on a variable foundation constant.
A partially distributed load travels along the

(33)

4.0 NUMERICAL RESULTS AND

DISCUSSION
In order to illustrate the preceding analysis, an
elastic beam of length 150m s considered. The
mass per unit length of the beam
1 =2758291kg/m, the modulus of elasticity

E=3.1x10"N/m andl =2.87698x10°m"*.

beam with velocity v=8.128m™, the values
of the foundation modulus is varied ON/m3 and
the values of rotatory inertia correction factor
RO is varied from 0.5 and5.5.

Figure 5.1 displays the displacement response
of a beam to moving partially distributed forces
for various values of foundation stiffness K
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and fixed values of axial force N and rotatory

inertia correction factor R° =0.5. The figure
shows that as the foundation stiffness K
increases, the response amplitude of the beam
decreases. Similar results are obtained when the
beam is subjected to moving partially
distributed masses as shown in Figure 5.3.
Figure 5.2 illustrates that for values of axial
force, and fixed values of foundation stiffness
and rotatory inertia correction factor, the
deflection profile of the vibrating structure is
reduced The same results were obtained when
the elastic is transverse by a partially
distributed mass, as indicated in Figure 5.4. In
Figure 5.5, the response of the beam to partially

distributed forces values of rotatory inertia
correction factor  and for fixed value of
foundation stiffness and axial force. It is seen
that the deflection of the beam decreases with
the increase in the rotatory inertia correction
factor. The same behavior characterizes the
deflection profile of the uniform beam when it
is traversed by moving partially distributed
masses as shown in Figure 5.6. Finally, Figure
5.7 depicts the comparison of the transverse
displacement response of moving partially
distributed force and moving partially
distributed mass of a Rayleigh beam traversed
by a moving load travelling at variable velocity
for fixed values of foundation stiffness, axial
force and rotatory inertia correction factor.

Figure 1. Deflection profile of the simply supported beam traversed by a moving partially
distributed force moving at variable velocities for various k and fixed N(20000), R°(0.5)
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-0.01
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o

-0.02

-0.03

time (t)s

N=30000 = - = N=3000000

Figure 3. Transverse displacement of the simply supported beam traversed by a moving
partially distributed force moving at variable velocities for various n and fixed

K (40000 ), R° (0.5)

Figure 4. Transverse displacement of the simply supported beam traversed by a moving
partially distributed masses moving at variable velocities for various N and fixed

K (40000 ), R° (0.5) and
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Figure 5. Response of the simply supported beam traversed by a moving partially
distributed force moving at variable velocities for various r°and fixed K (40000), N(20000)
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time (t)s
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Figure 6. Response of the simply supported beam traversed by a moving partially
distributed masses moving at variable velocities for various r°and fixed  (40000), N (20000
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displacement (m)

= = = Moving Force

4.5

Moving Mass

Figure 7. Comparison of the displacement response of moving partially distributed force
and moving partially distributed mass moving at variable velocities for fixed values of
foundation stiffness, axial force and rotatory inertia correction factor.

5.0 CONCLUSION

A close form solution is presented for the
displacement response of a uniform beam
under the actions of partially distributed
masses moving with variable velocity. The
study demonstrates the critical influence of
time-dependent  stiffness and  velocity
variation on the dynamic response of elastic
structures. The analytical approach employed
provides valuable insights into the complex
interactions  between ~moving  masses,
structural parameters, and dynamic behavior.
The findings of this research have significant
implications on the design and vibration
control of elastic structures subjected to
dynamic loads, highlighting the need for
more accurate and robust design guidelines.
By shedding light on the dynamic response of
elastic structures, this study contributes to the
advancement of structural engineering,
vibration analysis, and related fields,

ultimately enhancing the safety, durability,
efficiency, and reliability of engineering
systems.
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