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Abstract

The disposal of plastic waste presents significant environmental challenges, including degradation of
landfills and water bodies, greenhouse gas emissions, and soil contamination. Utilizing plastic waste in
concrete production offers a solution to illegal dumping and reduces the reliance on mined aggregates,
promoting sustainable construction practices. Polyethylene Terephthalate (PET), commonly found in
plastic bottles and food containers, is a readily available source of plastic waste. This study investigates
the effects of treating PET waste with calcium hypochlorite solution (Ca(ClO).) before incorporating it
into concrete as a partial replacement for coarse aggregate. Various compressive strength, ultrasonic
pulse velocity (UPV), and density tests were conducted for three replacement percentages: 15 %, 30 %,
and 45 % of conventional coarse aggregate with modified plastic aggregates (MPA). The findings show
that chemically treated plastic aggregates maintained fresh density while reducing slump value at 30%
and 45% replacement levels, even with the addition of polycarboxylate acid (superplasticizer), possibly
due to surface roughness and irregular shapes of the MPA. However, concrete with 30% MPA achieved
a 28-day compressive strength, UPV, and density of 23.13 N/mmz2, 3643 m/s, and 1996 kg/ms,
respectively, which conforms with BS EN 206-1 (2013) standards for the minimum requirement of
structural lightweight concrete. Additionally, three machine learning models which include Artificial
Neural Network (ANN), K-Nearest Neighbor (KNN) and Random Forest (RF) were developed to
predict water absorption and sorptivity. Pre-processing, statistical methods and data visualization
techniques were employed for data understanding. Experimental results were used to generate a dataset,
and the models demonstrated excellent prediction capability, particularly the KNN model, with
coefficient of determination (R?) values of 1.0 for all parameters. These models offer efficient
alternatives to time-consuming and costly experiments, facilitating production processes and quality
control of building materials. Chemical treatment enhanced the bond strength between the cementitious
matrix and plastic aggregates, improving compressive strength and utilizing MPA as a partial
replacement for conventional coarse aggregate, producing sustainable lightweight concrete material.

Keywords: Artificial Neural Network (ANN), Compressive strength, K-Nearest Neighbor (ANN),
Modified Plastic Aggregate Concrete, Random Forest (RF), Ultrasonic Pulse Velocity (UPV).
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1.0 INTRODUCTION
Concrete, the second most consumed material

after water, is favored for its versatility in being
moulded into various shapes. Coarse
aggregates, constituting 65-75% of concrete by
volume, are crucial to its production,
contributing significantly to the material's
strength, durability and stability (Munir et al.,
2024; Agboola et al., 2020). The growing need
for construction materials and the limited
supply of top-quality coarse aggregates have
prompted meaningful discussions about
sustainability and environmental impact
(Babaremu et al., 2024; 1di et al., 2020; Smith
et al., 2018). Extracting these aggregates often
causes significant environmental disturbances,
including habitat destruction and landscape
alteration, leading to ecological imbalances and
biodiversity loss (Kumar & Sharma, 2018).
While coarse aggregates are crucial for
concrete structures' strength, durability, and
stability (Agboola et al., 2021), they also
contribute to several challenges in normal-
weight concrete. To address these issues,
researchers are exploring using lighter, more
environmentally friendly materials as partial
replacements for conventional aggregates
(Agboola et al., 2024). This has led to the
development of lightweight concrete and the
investigation of alternative aggregate sources,
such as plastic waste (Zurkernain et al., 2021;
Kumar et al., 2020).

Research has shown that adequately processed
plastic waste can partially replace traditional
aggregates in concrete mixtures (Babafemi et
al., 2022; Mustafa et al., 2021). However,
many studies report challenges with using
recycled plastic aggregates (RPA) as partial
replacement for conventional aggregates, such
as inadequate strength and durability for

structural purposes. Some researchers suggest
improving the bonds by performing surface
modifications using chemical treatments on the
RPA (Chen et al., 2023; Abu-Saleem et al.,
2021). A study by Ahmed et al. (2023) and
Abu-Saleem et al. (2021) demonstrated that
treating RPA with an oxidizing agent can
strengthen the bond between plastic and cement
paste, producing stronger concrete.

Given the variability in the quality and
properties of plastic aggregates, it is essential to
develop a model that can predict its strength
properties to design solid and durable concrete
(Gravina, et al., 2021). With advancements in
artificial intelligence, predicting concrete
properties has become more accessible
(Poluektova & Poluektov, 2024). Various
machine learning algorithms, such as Artificial
Neural Networks (ANN), K-Nearest Neighbors
(KNN), and Random Forest (RF) models, are
being employed to forecast these properties
accurately (Boateng et al., 2020).

An Artificial Neural Network (ANN) is a
computational model inspired by how
biological neural networks in the human brain
process information. It comprises
interconnected processing units called neurons,
which work collectively to solve specific
problems. An artificial neural network (ANN)
architecture consists of an input layer, one or
more hidden layers, and an output layer. Each
layer is composed of multiple neurons
connected by weights. During the learning
process, these weights are adjusted based on the
output error compared to the desired outcome,
typically using algorithms like
backpropagation (Abdolrasol et al., 2021).
ANNs are highly effective in dealing with
complex, non-linear relationships, which
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makes them a valuable tool in various fields,
including image and speech recognition,
natural language processing, and predictive
analytics. Recent advancements have further
enhanced ANN capabilities by incorporating
techniques like deep learning, which involve
deeper networks with many layers, allowing for
more sophisticated data representations and
improved performance in tasks such as object
detection and language translation (Alam et al.,
2020). Artificial Neural Networks (ANNS)
have significant applications in concrete
technology, improving the development,
optimization, and quality control of concrete
materials and processes. ANNSs are particularly
useful for predicting the properties and
performance of concrete mixtures by analyzing
various input variables, such as component
proportions, curing conditions, and
environmental factors. This allows for accurate
predictions of critical properties like
compressive strength and workability (Mungle
et al., 2024; Yasir et al., 2020).

The K-nearest neighbours (KNN) algorithm is
supervised machine learning for classification
and regression tasks. It operates on the
principle that similar data points will likely
have similar outcomes. In classification, KNN
assigns a class to a new data point based on the
majority class among its K nearest neighbors,
identified using a distance metric such as
Euclidean distance (Zhang et al., 2022). Recent
advancements have focused on improving the
efficiency and scalability of KNN through
techniques such as approximate nearest
neighbor search and dimensionality reduction.
Despite these challenges, KNN remains widely
used due to its effectiveness in various
domains, including pattern recognition, image
analysis, and recommendation systems (Qiao et

al., 2018). K-Nearest Neighbors (KNN) aids in
quality control by predicting concrete strength
and other properties based on early-age test
results. It compares these results with data from
similar mixes to detect potential issues early
and adjust curing processes or mix proportions
accordingly (Chai et al., 2023). KNN also
supports  the prediction of long-term
performance and durability by analyzing
environmental factors and material properties,
helping engineers assess the sustainability and
resilience of concrete infrastructure over its
service life (Song et al., 2021).

Random forests are a powerful machine
learning technique known for their robustness
and flexibility. Originating from Breiman's
work in 2001, random forests involve an
ensemble of decision trees, where multiple
trees are trained on random subsets of data, and
their outputs are aggregated for prediction.
Over the years, studies have explored various
aspects of random forests, including feature
importance, parameter tuning, and performance
optimization.  Advancements in parallel
computing and distributed systems have
enabled the scaling of random forest algorithms
to big data environments (Jemili et al., 2024;
Khan et al.,, 2023). The interpretability of
random forest models has also been enhanced
with techniques for explaining individual
predictions. Researchers have utilized Random
Forest (RF) algorithms to predict concrete
strength based on mix composition, curing
conditions, and environmental factors,
allowing engineers to optimize formulations
for specific applications (Li et al., 2022; Aswal
etal., 2025; Tariq et al., 2024). RF models also
analyze the durability of concrete structures by
predicting factors like permeability, chloride
ion penetration, and carbonation depth, aiding
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in the design of durable and long-lasting
infrastructures (Choudhary, 2024; Luhar &
Luhar, 2024; Jang et al., 2019). This study
evaluates the effects of modified plastic
aggregate (MPA) as a coarse aggregate
supplement in producing lightweight concrete
(LWC) and also investigate how calcium
hypochlorite surface-treated plastic aggregates
impact concrete strength.

20 MATERIALS AND METHODS

2.1 Materials

Polyethylene Terephthalate (PET) Aggregate
bottle waste was collected from a local dump
site area in Mudalawal market in the Bauchi
metropolis. The plastic aggregates were
produced by crushing the plastic waste using
locally fabricated crushing machine into sizes
ranging from 5 to 20 mm. Before mixing with
concrete, the plastic aggregates were treated by
soaking in a calcium hypochlorite for 24 hours.
500 grams of the calcium hypochlorite
(Ca(ClO)2) purchased from a local chemical
vendor in Bauchi was diluted in five liters of
water. This chemical etching treatment
provided the plastic aggregates with a rough
surface texture to improve the bond between
the cement paste and the plastic. The treated
plastic aggregate was then air-dried at room
temperature at an average of 25°C to ensure no
residual chemicals remained on the surface.
Personal protective equipment, including
gloves and goggles were used to prevent
chemical exposure and damage. A
superplasticizer (polycarboxylic acid) at 1% of
the weight of cement was added to the mix as a
chemical admixture to slow the hydration
process and improve the hydrophobicity of the
modified plastic aggregate with water.

2.2 Methods

2.2.1 Mixing Procedure,
Preparation and Curing

Concrete cubes size of 100 x 100 x 100 mm
were produced to study the physical and
mechanical properties of the samples. All
samples were cured for the period of 7, 14, 28,
and 56 days. The 56-day compressive strength
test plays a vital role in evaluating the delayed
strength gain of concrete containing
superplasticizers, as these admixtures can
extend the setting time and hydration process
(Guoju & Zhang, 2020). Four mixes were
prepared: the control (0%), 15 %, 30 % and 45
% Modified Plastic Aggregate (MPA). The
samples were kept in the laboratory and cured
at a room temperature of 25 + 5 °C. The
samples remained in the curing tank until the
specified age. The concrete samples underwent
tests for compressive strength and ultrasonic
pulse velocity. It is essential to ascertain the
strength of the various concrete types to
determine how they will perform in different
conditions and determine the effect of MPA on
concrete samples, that is because strength of
various concrete types, including the effect of
MPA, is essential for determining their
performance under different conditions,
ensuring structural integrity, and evaluating
their suitability for specific applications (Li et
al., 2022). Ultrasonic pulse velocity (UPV) is
essential to  establish the  concrete's
homogeneity and detect the presence of cracks,
voids, and other imperfections in plastic
concrete. The tests in the study were all carried
out according to BS standard. The tests
standards are presented in Table 1. The mix
design of normal weight and lightweight
concrete were carried out in accordance with
(ACI 211. 2-98 and ACI 211. 2-87) to design a
30 N/mm? concrete grade, as shown in Table 2.

Sample
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hardened concrete mixture cannot
significantly exceed that of the coarse
aggregate used (Neville et al., 2019).

The basic reason in the design for the strength  of
is the physical properties if the coarse aggregate
or aggregate type to be used, since the strength

Table 1: Test Method for Experimental Program
Test Description

Specification

Specific Gravity

Aggregate Crushing Value (ACV)
Aggregate Impact Value (AlV)
Workability

Density

Compressive Strength

Water Absorption

Ultra Pulse Velocity

BS 812-2:1995

BS 812-110:1990

BS 812-112:1990

BS EN 12350-2:2009
BS EN 12390-7:2019
BS EN 12390-3:2019
BS EN 1097-6:2013
BS 1881-203:1995

Table 2: Mix Proportion of MPA Concrete

Parameters 0% MPA 15% MPA 30% MPA 45% MPA
WI/C ratio 0.52 0.40 0.40 0.40
Water content (kg/md) 181 139 139 139
Cement content (kg/m?) 348 348 348 348
Sand content (kg/md) 627 627 627 627
Coarse agg. (kg/md) 1226 1042 858 674
Plastic agg. (kg/mq) 0 36 72 108
SP at 1% of cement (kg/m?3) 0 3.48 3.48 3.48
Target Density (kg/m?) 2382 2195 2047 1899
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PRELIMININARY TESTS
Material preparation and determination of physical
properties of modified plastic aggregate and conventional
agegregate.

L

Physical properties tests on aggregates.
L. Specific gravity 11. Bulk density
iii. Water absorption

Mechanical properties tests at 7, 14, 28,
and 56 days.
1. Compressive strength 1. UPV

o
Data sample resulted Development of AAN, Validating-thr: AAN,
from laboratory — KNN and Random > KNN and Random
experimental testing Forest models Forest models
K

‘ Final results ‘

Figure 1: Flowchart describing the experimental design

2.2.2 Predictive Models Development

This section presents the predicted
compressive strength of MPA concrete as a
partial replacement for conventional coarse
aggregate in lightweight concrete. MPA
replaced conventional coarse aggregate at
0%, 15%, 30%, and 45%. The compressive
strength of the MPA concrete was predicted
using ANN, KNN, and RF models.
Experimental test results were used to
generate additional data with CTGAN, a
machine-learning library for synthetic data
generation.

2.2.3 Simulation Results and Analysis

The study evaluated the compressive strength
of modified plastic aggregate concrete using
computational  intelligence  techniques.
Initially, a dataset of 500 entries was
generated from experimental and augmented
data using the CTGAN library. This dataset
included parameters such as cement content

(C), water content (W), superplasticizer (SP),
coarse aggregates (CA), fine aggregates
(FA), MPA, testing age (A), slump value (S),
density (D), Aggregate impact value (1V),
Aggregate crushing value (CV), ultrasonic
pulse velocity (UPV) and compressive
strength (CS).

The data was split into a training set (70%)
and a testing set (30%). The training set
developed the predictive model, while the
testing set assessed the model's accuracy in
predicting MPA concrete's later age
compressive strength. Statistical analysis of
the dataset revealed essential parameters such
as maximum, minimum, mean, and standard
deviation for input and output variables from
the MPA concrete strength prediction model,
as shown in Table 4. Measures were taken to
handle outliers, with any identified outliers
replaced by mean values to maintain data
integrity. This process ensured the dataset
maintained a consistent distribution, with no
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more than 5% outliers in any attribute, as
shown in Tables 5 and Figure 7

Table 4: The Statistical Parameters of Compressive Strength Model

Variables Count Mean Star_lda}rd Minimum Maximum
Deviation

Water 500 150.68 19.42 128.00 207.00
Cement 500 348.00 0.00 348.00 348.00
Fine 500 745.00 0.00 745.00 745.0
Coarse 500 836.60 210.92 338.00 1391.00
SP 500 1.99 1.64 0.00 4.48
MPA 500 75.56 42.32 0.00 174.00
Age 500 50.24 23.31 7.00 92.00
Slump 500 17.10 8.15 0.00 38.00
Density 500 1951.08 223.68 1393.35 2624.47
Impact value 500 2.95 1.50 1.20 7.40
Crushing value 500 3.79 1.38 2.23 8.96
UPVv 500 4026.12 630.62 2276.86 5426.17
Strength (N/mm?) 500 29.61 7.86 5.58 44.38

Table 5: Analysis of the Outliers for all the Variables

Compressive Strength
Variabless W C F C SP MPA Age S D IV Cv UPV CS
0O 0 O

Outliers 0 0 2 0 0 O 0 1 0 0
Experimental Dataset Synthetic Dataset
140
120
120
100
100
> 80 >
2 2 80
g g
o 60 o
o L 60
L Lo
40 40
20 I II 20
-2 0 2 -2 0 2
Value Value

Figure 7: The experimental and synthetic data generated in this study for compressive
strength of MPA concrete
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2.2.4 Performance Evaluation of
Predictive Models

Three indicators are used to evaluate
predictive models: the coefficient of
determination (R2?), Mean Absolute Error
(MAE), and Mean Squared Error (MSE).
Each metric provides a unique perspective on

the model's accuracy and reliability.

I. Coefficient of Determination (R?):
R2 measures the proportion of the variance in
the dependent variable predictable from the
independent variables, with values ranging
from O to 1, where 1 indicates perfect
prediction. The equation gives it:
R2=1 _ SSres

SStot
Where SSres is the sum of squares of the
residuals, Y. (yi — i )?
SStot is the total sum of squares, ¥ (yi —  )?
yi are the actual values
yi are the predicted values
y is the mean of the actual values.

ii. Mean Absolute Error (MAE):
MAE measures the average magnitude of
errors in predictions without considering
their direction, indicating how far off
predictions are from actual outcomes on
average. The equation gives it:

1 n
MAE=="" |y =3

N 4=
Where n is the number of observations.
y; are the actual values.
¥; are the predicted values.
MAE provides an idea of how far off
predictions are from the actual outcomes, on
average.
iii. Mean Squared Error (MSE):
MSE measures the average of the squares of
errors, giving more weight to larger errors,
thus providing a measure sensitive to outliers.
The equation gives it:

1 n
MAE = HZ- (yi —9)?
=1
Where n is the number of observations

y; are the actual values
¥; are the predicted values.

3.0 RESULTS AND DISCUSSIONS
3.1  Properties of Materials

Table 3 summarizes the material properties
used in this study. The specific gravity of fine
aggregate was 2.59; this is supported by
Ndahi et al., (2024) and Singh & Siddique,
(2019). Crushed stones had a specific gravity
of 2.71, which is closed to the findings of
Agboola et al., (2024); while MPA had a
specific gravity of 0.53. This finding aligns
with previous research highlighting the
suitability of aggregates with low specific
gravity for LWC applications (Mehta &
Monteiro, 2017). The compacted and
uncompacted bulk densities of fine aggregate
were 1525 Kg/m® and 1340 Kg/m?,
respectively. This is supported by Mehta &
Monteiro, (2017). The compacted and
uncompacted bulk densities for crushed stone
were 1727 Kg/m® and 1398 Kg/m?,
respectively. The bulk density of coarse
aggregate used in concrete typically falls
within the range of 1200 to 1750 kg/m?3 as
confirmed by Kosmatka & Wilson, (2016).
MPA's compacted and uncompacted bulk
densities were 337 Kg/m® and 212 Kg/m?®,
respectively. This finding was also confirmed
by Gravina et al. (2021). Water absorption
for crushed stone was 2.21%, and for MPA,
it was 0.50%, indicating minimal porosity,
which enhances concrete performance and
durability. The aggregate impact values for
crushed stone and MPA were 5.2% and 2.0%,
respectively, and fall within the BS EN 1097-
2 standard limits. Aggregate crushing values
were 6.6% for crushed stone and 3.20% for
MPA, within the British standard BS 812:
Part 110:1990 limits.

;
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Table 3: Properties of Materials
Bulk Density (Kg/m?) Specific Water Impact .
. . . Crushing
Materials Compacted  Uncompacted gravity Absorption  Value Value (%)
(9) (%) (%)
Sand 1525 1340 2.59 - - -
Crushed 1727 1398 2.71 221 5.20 6.60
Stone
MPA 337 212 0.53 0.50 2.00 3.20
3.2 Effect of MPA as Partial value of 20 mm. Conversely, a slump value

Replacement of Coarse Aggregate in LWC
MPA was introduced to replace conventional
coarse aggregate at varying percentages: 0%,
15%, 30%, and 45%. The properties of the
produced specimens were evaluated for up to
56 days to understand the effects of MPA
inclusion on concrete performance.

3.2.1 Workability

Concrete workability was assessed using the
slump test, targeting a 75 to 100 mm slump
value. Analyzing the experimental results in
Figure 3, it was observed that the highest
slump value of 30 mm was achieved with a
15% MPA mix, followed by the control and
30% MPA mixes, each yielding a slump

of 10 mm was recorded for the 45% MPA
mix. Notably, the higher slump value
observed in the 15% MPA mix could be
attributed to adding a superplasticizer in the
concrete mix with MPA as a partial
replacement of coarse aggregate. This
addition aided in releasing trapped water in
the interfacial transition zone, as affirmed by
Jiang et al. (2020). Superplasticizers play a
crucial role in mitigating the adverse effects
of MPA on workability by enhancing particle
dispersion and reducing water demand (Jiang
et al., 2020). Higher MPA percentages
required more excellent water content to
maintain adequate workability.

35
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Figure 3: Slump result of concrete containing modified plastic aggregate (MPA
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3.2.2 Density

The average density of concrete specimens
after 28 days showed that the density of
concrete with MPA as a partial replacement
of coarse aggregate was reduced. Referring to
the experimental test results in Figure 4, it is
evident that the addition of MPA in the
concrete mix has caused a reduction in the
density of the MPA concrete. The 28-day

MPA samples with a density of 2135 kg/ms3,
1996 kg/m3, and 1895 kg/mé3, respectively.
This represents approximately a 9.03%,
14.96%, and 19.26% reduction in density
compared to the control samples This finding
was also confirmed by Gravina et al., (2021).
This reduction aligns with the structural
lightweight concrete range specified by BS
EN 206-1 (2013), making the 30% and 45%

density of the control specimens was 2347 MPA  mixes suitable for structural
kg/m3, followed by 15%, 30%, and 45% applications.
3000
2500 2347 2335
1895

9.03%

28 Days Density (Kg/m?)

E0% MPA

14.96% f2ei:

| B |

01 19.26%

H15% MPA

030% MPA B45% MPA

Figure 4: Density of concrete containing MPA at 28 days

3.2.3 Compressive Strength

Figure 4 presents the result of the
compressive strength test for lightweight
concrete with MPA replacing 15%, 30%, and
45% of conventional coarse aggregates with
a water cement ratio of 0.52 for the control
sample and 0.4 for the replacement samples,
at 7 days, 14 days, 28 days and 56 days
respectively; The results showed that
replacing conventional aggregates with MPA
led to a reduction in density and compressive
strength. This reduction could be attributed to
the variability in properties of MPA, such as
size, shape and quality, which can lead to
inconsistent  performance in  concrete
mixtures, causing fluctuations in
compressive strength (Raj et al., 2020). The
control achieved the highest compressive

strength of 32.59 N/mm? at 56 days. A linear
reduction in compressive strength was
observed for MPA concrete samples, with
decreases of 9.33%, 16.14%, and 22.40% for
15%, 30%, and 45% MPA content,
respectively. A reduction in compressive
strength was also noted at higher levels of
MPA replacement, most likely due to the
reduction in workability of the specimens at
30% and 45% MPA replacement, making
them difficult to compact. Smith et al. (2018)
also reported that low workability can result
in increased porosity and decreased strength
of concrete. This can be attributed to the
inability of the mix to flow and fill the mould
correctly, which may have contributed to the
reduction in the strength of lightweight
concrete containing MPA compared to the
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control samples. Despite this, all MPA
lightweight concrete samples met the BS EN
206:2000 minimum requirement of 17
N/mm? for 28-day compressive strength of

structural lightweight concrete. Therefore,
MPA can produce structural lightweight
concrete with up to 30% replacement without
significant changes in compressive strength.

35

30

Compressive strength
(N/mm?)
& & 3 &

]

o

Tdays 14days

28days 56days

CuringPeriods

@0% MPA

B15% MPA
@30% MPA
E45% MPA

Figure 4: Compressive strength of concrete containing MPA

3.2.4 Ultrasonic Pulse Velocity (UPV)

The UPV test results of the control sample
and concrete containing 15%, 30%, and 45%
MPA are depicted in Figure 5 below. The
control sample exhibited the highest UPV
readings on various days, while the 45%
MPA samples showed the lowest UPV
readings. Figure 5 shows that the control
sample exhibited the highest UPV readings
of 3822, 4061, 4261, and 4651 m/s at 7, 14,
28, and 56 days, respectively. The 45% MPA
samples showed the lowest UPV readings of

2826, 3259, 3396, and 3792 m/s at 7, 14, 28,
and 56 days, respectively. This reduction can
be attributed to the increased porosity of the
concrete due to the incorporation of MPA.
The heightened porosity may create irregular
paths for the ultrasonic waves, resulting in
lower UPV measurements than control
specimens (Razagpur et al., 2015). However,
all LWC samples with MPA replacement met
the BS 1881-203:1995 minimum
requirements for structural lightweight
concrete.
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Figure 5: Ultrasonic pulse velocity of concrete containing MPA

3.3 Predicting Compressive Strength of MPA Concrete
Table 6 shows the training and testing results for ANN, KNN, and RF models predicting the
compressive strength of MPA concrete at various ages.

Table 6: Performance Evaluation of Compressive Strength Models

Training results

Models name R? MAE MISE
ANN 0.9982 0.1775 0.1170
KNN 1.00 0.001 0.001
RF 0.85 251 9.22
Testing results

ANN 1.00 0.0973 0.0294
KNN 1.00 0.001 0.001
RF 0.86 2.70 10.59

Figures 9 to 12 illustrate that the ANN and
KNN models closely predicted MPA
concrete's measured water absorption values.
The ANN model achieved R?, MAE, and
MSE values of 1.00, 0.0973, and 0.0294 for
the testing dataset. The KNN model
performed exceptionally, with Rz, MAE, and
MSE values of 1.0, 0.001, and 0.001 for

training and testing datasets. The RF model
achieved R?, MAE, and MSE values of 0.86,
2.70, and 10.59 for the testing dataset as in
Table 6, while Figures 13 and 14 illustrated
the relationship between experimental test
results and predicted and experimental test
results versus predicted for the RF model.
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Figure 9: Experimental test results versus predicted compressive strength for ANN model
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Figure 10: Relationship between experimental test results and predicted compressive
strength for ANN model
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Figure 11: Experimental test results versus predicted compressive strength for the KNN
model
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Figure 12: Relationship between experimental test results and predicted compressive
strength for the KNN model
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strength for RF model

I Academy Journal of Science and Engineering 19(2)2025 Page |33
OPEN| \CCESS
BY This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)



Muhammad FU....

Prediction of Concrete Strength...

40 CONCLUSION

Both fine and coarse aggregates meet British
Standards (BS EN 12620:2013, BS 812-1377
(1970), BS EN 1097-3:2018, BS EN 1097-2,
BS 812: Part 110:1990 and BS EN 1097-
6:2013), for construction materials. The fine
aggregate exhibits suitable fineness modulus,
specific gravity, bulk density, aggregate
impact value, and aggregate crushing value,
ensuring its applicability for concrete
production and other construction needs.
Similarly, the coarse aggregate displays
excellent quality with appropriate density,
specific gravity, low water absorption, and
high resistance to impact and crushing,
indicating it is well-suited for durable and
high-performance  concrete  structures.
Modified plastic aggregate also complies
with British Standards (BS EN 12620:2013),
meeting grading requirements in sieve
analyses. Its specific gravity, bulk density,
high void content, and low impact and
crushing values indicate it is a lightweight,
durable material suitable for specific
construction applications. Its low water
absorption rate further enhances its suitability
for moisture-sensitive environments,
contributing to quality and longevity in
various construction projects.

Fresh MPA concrete at 15% replacement
showed better workability than the control,
whereas 45% replacement exhibited the
lowest slump value due to MPA's irregular
shape and rough surface texture affecting
water flow. The use of MPA as a partial
replacement for traditional aggregates led to
a reduction in concrete density, ranging from
9.03% to 19.26% for 15% to 45%
replacement, highlighting its lighter nature.
At 28 days of curing, the strength of MPA
concrete decreased with higher replacement
percentages, attributed to its lower rigidity
compared to traditional coarse aggregates,
with reductions ranging from 7.04% to
20.30% for 15% to 45% replacement,
respectively. This shows an inverse

relationship between replacement percentage
and strength properties. Predictive modelling
using  K-Nearest Neighbors (KNN)
consistently provided the most accurate
predictions for the compressive strength
property of MPA concrete. KNN
demonstrated superior performance with the
lowest errors and highest R-squared (R?)
scores across all evaluations with R?, MAE,
and MSE values of 1.0, 0.001, and 0.001 for
training and testing datasets. Artificial Neural
Networks (ANN) also showed predictive
solid capabilities, serving as a reliable
alternative to KNN with Rz, MAE, and MSE
values of 1.00, 0.0973, and 0.0294 for the
testing dataset. In contrast, Random Forest
(RF) exhibited less accurate predictions,
indicating a need for further refinement to
improve its performance in predicting this
material property with R2, MAE, and MSE
values of 0.86, 2.70, and 10.59 for the testing
dataset.
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