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Abstract 

The disposal of plastic waste presents significant environmental challenges, including degradation of 

landfills and water bodies, greenhouse gas emissions, and soil contamination. Utilizing plastic waste in 

concrete production offers a solution to illegal dumping and reduces the reliance on mined aggregates, 

promoting sustainable construction practices. Polyethylene Terephthalate (PET), commonly found in 

plastic bottles and food containers, is a readily available source of plastic waste. This study investigates 

the effects of treating PET waste with calcium hypochlorite solution (Ca(ClO)2) before incorporating it 

into concrete as a partial replacement for coarse aggregate. Various compressive strength, ultrasonic 

pulse velocity (UPV), and density tests were conducted for three replacement percentages: 15 %, 30 %, 

and 45 % of conventional coarse aggregate with modified plastic aggregates (MPA). The findings show 

that chemically treated plastic aggregates maintained fresh density while reducing slump value at 30% 

and 45% replacement levels, even with the addition of polycarboxylate acid (superplasticizer), possibly 

due to surface roughness and irregular shapes of the MPA. However, concrete with 30% MPA achieved 

a 28-day compressive strength, UPV, and density of 23.13 N/mm², 3643 m/s, and 1996 kg/m³, 

respectively, which conforms with BS EN 206-1 (2013) standards for the minimum requirement of 

structural lightweight concrete. Additionally, three machine learning models which include Artificial 

Neural Network (ANN), K-Nearest Neighbor (KNN) and Random Forest (RF) were developed to 

predict water absorption and sorptivity. Pre-processing, statistical methods and data visualization 

techniques were employed for data understanding. Experimental results were used to generate a dataset, 

and the models demonstrated excellent prediction capability, particularly the KNN model, with 

coefficient of determination (R²) values of 1.0 for all parameters. These models offer efficient 

alternatives to time-consuming and costly experiments, facilitating production processes and quality 

control of building materials. Chemical treatment enhanced the bond strength between the cementitious 

matrix and plastic aggregates, improving compressive strength and utilizing MPA as a partial 

replacement for conventional coarse aggregate, producing sustainable lightweight concrete material.  

 

Keywords: Artificial Neural Network (ANN), Compressive strength, K-Nearest Neighbor (ANN), 

Modified Plastic Aggregate Concrete, Random Forest (RF), Ultrasonic Pulse Velocity (UPV). 
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1.0 INTRODUCTION  

Concrete, the second most consumed material 

after water, is favored for its versatility in being 

moulded into various shapes. Coarse 

aggregates, constituting 65-75% of concrete by 

volume, are crucial to its production, 

contributing significantly to the material's 

strength, durability and stability (Munir et al., 

2024; Agboola et al., 2020). The growing need 

for construction materials and the limited 

supply of top-quality coarse aggregates have 

prompted meaningful discussions about 

sustainability and environmental impact 

(Babaremu et al., 2024; Idi et al., 2020; Smith 

et al., 2018). Extracting these aggregates often 

causes significant environmental disturbances, 

including habitat destruction and landscape 

alteration, leading to ecological imbalances and 

biodiversity loss (Kumar & Sharma, 2018). 

While coarse aggregates are crucial for 

concrete structures' strength, durability, and 

stability (Agboola et al., 2021), they also 

contribute to several challenges in normal-

weight concrete. To address these issues, 

researchers are exploring using lighter, more 

environmentally friendly materials as partial 

replacements for conventional aggregates 

(Agboola et al., 2024). This has led to the 

development of lightweight concrete and the 

investigation of alternative aggregate sources, 

such as plastic waste (Zurkernain et al., 2021; 

Kumar et al., 2020). 

Research has shown that adequately processed 

plastic waste can partially replace traditional 

aggregates in concrete mixtures (Babafemi et 

al., 2022; Mustafa et al., 2021). However, 

many studies report challenges with using 

recycled plastic aggregates (RPA) as partial 

replacement for conventional aggregates, such 

as inadequate strength and durability for 

structural purposes. Some researchers suggest 

improving the bonds by performing surface 

modifications using chemical treatments on the 

RPA (Chen et al., 2023; Abu-Saleem et al., 

2021). A study by Ahmed et al. (2023) and 

Abu-Saleem et al. (2021) demonstrated that 

treating RPA with an oxidizing agent can 

strengthen the bond between plastic and cement 

paste, producing stronger concrete. 

Given the variability in the quality and 

properties of plastic aggregates, it is essential to 

develop a model that can predict its strength 

properties to design solid and durable concrete 

(Gravina, et al., 2021). With advancements in 

artificial intelligence, predicting concrete 

properties has become more accessible 

(Poluektova & Poluektov, 2024). Various 

machine learning algorithms, such as Artificial 

Neural Networks (ANN), K-Nearest Neighbors 

(KNN), and Random Forest (RF) models, are 

being employed to forecast these properties 

accurately (Boateng et al., 2020). 

An Artificial Neural Network (ANN) is a 

computational model inspired by how 

biological neural networks in the human brain 

process information. It comprises 

interconnected processing units called neurons, 

which work collectively to solve specific 

problems. An artificial neural network (ANN) 

architecture consists of an input layer, one or 

more hidden layers, and an output layer. Each 

layer is composed of multiple neurons 

connected by weights. During the learning 

process, these weights are adjusted based on the 

output error compared to the desired outcome, 

typically using algorithms like 

backpropagation (Abdolrasol et al., 2021). 

ANNs are highly effective in dealing with 

complex, non-linear relationships, which 
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makes them a valuable tool in various fields, 

including image and speech recognition, 

natural language processing, and predictive 

analytics. Recent advancements have further 

enhanced ANN capabilities by incorporating 

techniques like deep learning, which involve 

deeper networks with many layers, allowing for 

more sophisticated data representations and 

improved performance in tasks such as object 

detection and language translation (Alam et al., 

2020). Artificial Neural Networks (ANNs) 

have significant applications in concrete 

technology, improving the development, 

optimization, and quality control of concrete 

materials and processes. ANNs are particularly 

useful for predicting the properties and 

performance of concrete mixtures by analyzing 

various input variables, such as component 

proportions, curing conditions, and 

environmental factors. This allows for accurate 

predictions of critical properties like 

compressive strength and workability (Mungle 

et al., 2024; Yasir et al., 2020). 

The K-nearest neighbours (KNN) algorithm is 

supervised machine learning for classification 

and regression tasks. It operates on the 

principle that similar data points will likely 

have similar outcomes. In classification, KNN 

assigns a class to a new data point based on the 

majority class among its K nearest neighbors, 

identified using a distance metric such as 

Euclidean distance (Zhang et al., 2022). Recent 

advancements have focused on improving the 

efficiency and scalability of KNN through 

techniques such as approximate nearest 

neighbor search and dimensionality reduction. 

Despite these challenges, KNN remains widely 

used due to its effectiveness in various 

domains, including pattern recognition, image 

analysis, and recommendation systems (Qiao et 

al., 2018). K-Nearest Neighbors (KNN) aids in 

quality control by predicting concrete strength 

and other properties based on early-age test 

results. It compares these results with data from 

similar mixes to detect potential issues early 

and adjust curing processes or mix proportions 

accordingly (Chai et al., 2023). KNN also 

supports the prediction of long-term 

performance and durability by analyzing 

environmental factors and material properties, 

helping engineers assess the sustainability and 

resilience of concrete infrastructure over its 

service life (Song et al., 2021). 

Random forests are a powerful machine 

learning technique known for their robustness 

and flexibility. Originating from Breiman's 

work in 2001, random forests involve an 

ensemble of decision trees, where multiple 

trees are trained on random subsets of data, and 

their outputs are aggregated for prediction. 

Over the years, studies have explored various 

aspects of random forests, including feature 

importance, parameter tuning, and performance 

optimization. Advancements in parallel 

computing and distributed systems have 

enabled the scaling of random forest algorithms 

to big data environments (Jemili et al., 2024; 

Khan et al., 2023). The interpretability of 

random forest models has also been enhanced 

with techniques for explaining individual 

predictions.  Researchers have utilized Random 

Forest (RF) algorithms to predict concrete 

strength based on mix composition, curing 

conditions, and environmental factors, 

allowing engineers to optimize formulations 

for specific applications (Li et al., 2022; Aswal 

et al., 2025; Tariq et al., 2024). RF models also 

analyze the durability of concrete structures by 

predicting factors like permeability, chloride 

ion penetration, and carbonation depth, aiding 
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in the design of durable and long-lasting 

infrastructures (Choudhary, 2024; Luhar & 

Luhar, 2024; Jang et al., 2019). This study 

evaluates the effects of modified plastic 

aggregate (MPA) as a coarse aggregate 

supplement in producing lightweight concrete 

(LWC) and also investigate how calcium 

hypochlorite surface-treated plastic aggregates 

impact concrete strength.  

2.0 MATERIALS AND METHODS 

2.1  Materials  

Polyethylene Terephthalate (PET) Aggregate 

bottle waste was collected from a local dump 

site area in Mudalawal market in the Bauchi 

metropolis. The plastic aggregates were 

produced by crushing the plastic waste using 

locally fabricated crushing machine into sizes 

ranging from 5 to 20 mm. Before mixing with 

concrete, the plastic aggregates were treated by 

soaking in a calcium hypochlorite for 24 hours. 

500 grams of the calcium hypochlorite 

(Ca(ClO)2) purchased from a local chemical 

vendor in Bauchi was diluted in five liters of 

water. This chemical etching treatment 

provided the plastic aggregates with a rough 

surface texture to improve the bond between 

the cement paste and the plastic. The treated 

plastic aggregate was then air-dried at room 

temperature at an average of 25oC to ensure no 

residual chemicals remained on the surface. 

Personal protective equipment, including 

gloves and goggles were used to prevent 

chemical exposure and damage. A 

superplasticizer (polycarboxylic acid) at 1% of 

the weight of cement was added to the mix as a 

chemical admixture to slow the hydration 

process and improve the hydrophobicity of the 

modified plastic aggregate with water.  

2.2  Methods  

2.2.1 Mixing Procedure, Sample 

Preparation and Curing 

Concrete cubes size of 100 x 100 x 100 mm 

were produced to study the physical and 

mechanical properties of the samples. All 

samples were cured for the period of 7, 14, 28, 

and 56 days. The 56-day compressive strength 

test plays a vital role in evaluating the delayed 

strength gain of concrete containing 

superplasticizers, as these admixtures can 

extend the setting time and hydration process 

(Guoju & Zhang, 2020). Four mixes were 

prepared: the control (0%), 15 %, 30 % and 45 

% Modified Plastic Aggregate (MPA). The 

samples were kept in the laboratory and cured 

at a room temperature of 25 ± 5 °C. The 

samples remained in the curing tank until the 

specified age. The concrete samples underwent 

tests for compressive strength and ultrasonic 

pulse velocity. It is essential to ascertain the 

strength of the various concrete types to 

determine how they will perform in different 

conditions and determine the effect of MPA on 

concrete samples, that is because strength of 

various concrete types, including the effect of 

MPA, is essential for determining their 

performance under different conditions, 

ensuring structural integrity, and evaluating 

their suitability for specific applications (Li et 

al., 2022). Ultrasonic pulse velocity (UPV) is 

essential to establish the concrete's 

homogeneity and detect the presence of cracks, 

voids, and other imperfections in plastic 

concrete. The tests in the study were all carried 

out according to BS standard. The tests 

standards are presented in Table 1. The mix 

design of normal weight and lightweight 

concrete were carried out in accordance with 

(ACI 211. 2-98 and ACI 211. 2-87) to design a 

30 N/mm2 concrete grade, as shown in Table 2. 
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The basic reason in the design for the strength 

is the physical properties if the coarse aggregate 

or aggregate type to be used, since the strength 

of hardened concrete mixture cannot 

significantly exceed that of the coarse 

aggregate used (Neville et al., 2019). 

 

 

 

Table 1: Test Method for Experimental Program  

Test Description      Specification     

Specific Gravity     BS 812-2:1995 

Aggregate Crushing Value (ACV)  BS 812-110:1990 

Aggregate Impact Value (AIV)   BS 812-112:1990 

Workability      BS EN 12350-2:2009 

Density      BS EN 12390-7:2019 

Compressive Strength    BS EN 12390-3:2019    

Water Absorption    BS EN 1097-6:2013 

Ultra Pulse Velocity     BS 1881-203:1995  

 

 

Table 2: Mix Proportion of MPA Concrete 

Parameters 0% MPA 15% MPA 30% MPA 45% MPA 

W/C ratio 0.52 0.40 0.40 0.40 

Water content (kg/m3) 181 139 139 139 

Cement content (kg/m3) 348 348 348 348 

Sand content (kg/m3) 627 627 627 627 

Coarse agg. (kg/m3) 1226 1042 858 674 

Plastic agg. (kg/m3) 0 36 72 108 

SP at 1% of cement (kg/m3)  0 3.48 3.48 3.48 

Target Density (kg/m3) 2382 2195 2047 1899 
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’ 

Figure 1: Flowchart describing the experimental design 

2.2.2 Predictive Models Development 

This section presents the predicted 

compressive strength of MPA concrete as a 

partial replacement for conventional coarse 

aggregate in lightweight concrete. MPA 

replaced conventional coarse aggregate at 

0%, 15%, 30%, and 45%. The compressive 

strength of the MPA concrete was predicted 

using ANN, KNN, and RF models. 

Experimental test results were used to 

generate additional data with CTGAN, a 

machine-learning library for synthetic data 

generation. 

 

2.2.3 Simulation Results and Analysis 

The study evaluated the compressive strength 

of modified plastic aggregate concrete using 

computational intelligence techniques. 

Initially, a dataset of 500 entries was 

generated from experimental and augmented 

data using the CTGAN library. This dataset 

included parameters such as cement content 

(C), water content (W), superplasticizer (SP), 

coarse aggregates (CA), fine aggregates 

(FA), MPA, testing age (A), slump value (S), 

density (D), Aggregate impact value (IV), 

Aggregate crushing value (CV), ultrasonic 

pulse velocity (UPV) and compressive 

strength (CS). 

The data was split into a training set (70%) 

and a testing set (30%). The training set 

developed the predictive model, while the 

testing set assessed the model's accuracy in 

predicting MPA concrete's later age 

compressive strength. Statistical analysis of 

the dataset revealed essential parameters such 

as maximum, minimum, mean, and standard 

deviation for input and output variables from 

the MPA concrete strength prediction model, 

as shown in Table 4. Measures were taken to 

handle outliers, with any identified outliers 

replaced by mean values to maintain data 

integrity. This process ensured the dataset 

maintained a consistent distribution, with no 
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more than 5% outliers in any attribute, as 

shown in Tables 5 and Figure 7 

Table 4: The Statistical Parameters of Compressive Strength Model 

Variables Count Mean 
Standard  

Deviation 
Minimum Maximum 

Water 500 150.68 19.42 128.00 207.00 

Cement 500 348.00 0.00 348.00 348.00 

Fine 500 745.00 0.00 745.00 745.0 

Coarse 500 836.60 210.92 338.00 1391.00 

SP 500 1.99 1.64 0.00 4.48 

MPA 500 75.56 42.32 0.00 174.00 

Age 500 50.24 23.31 7.00 92.00 

Slump 500 17.10 8.15 0.00 38.00 

Density 500 1951.08 223.68 1393.35 2624.47 

Impact value 500 2.95 1.50 1.20 7.40 

Crushing value 500 3.79 1.38 2.23 8.96 

UPV 500 4026.12 630.62 2276.86 5426.17 

Strength (N/mm2) 500 29.61 7.86 5.58 44.38 

 

Table 5: Analysis of the Outliers for all the Variables 

 

Variables 

Compressive Strength     

W C F C SP MPA Age S D IV CV UPV CS 

Outliers 0 0 0 0 0 2 0 0 0 0 1 0 0 

 
Figure 7: The experimental and synthetic data generated in this study for compressive 

strength of MPA concrete  
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2.2.4 Performance Evaluation of 

Predictive Models  

Three indicators are used to evaluate 

predictive models: the coefficient of 

determination (R²), Mean Absolute Error 

(MAE), and Mean Squared Error (MSE). 

Each metric provides a unique perspective on 

the model's accuracy and reliability. 

i. Coefficient of Determination (R²): 

R² measures the proportion of the variance in 

the dependent variable predictable from the 

independent variables, with values ranging 

from 0 to 1, where 1 indicates perfect 

prediction. The equation gives it: 

R2 = 1 – 
SSres

 SStot
 

Where SSres is the sum of squares of the 

residuals, ∑(yi − ŷi )2 

SStot is the total sum of squares, ∑(yi − ȳ )2 

yi are the actual values 

ŷi are the predicted values     

ȳ is the mean of the actual values. 

ii. Mean Absolute Error (MAE):   

MAE measures the average magnitude of 

errors in predictions without considering 

their direction, indicating how far off 

predictions are from actual outcomes on 

average. The equation gives it: 

MAE =
1

n
∑ |yi − ŷi|

𝑛

𝑖=1
 

Where n is the number of observations. 

yi are the actual values. 

ŷi are the predicted values. 

MAE provides an idea of how far off 

predictions are from the actual outcomes, on 

average. 

iii. Mean Squared Error (MSE):   

MSE measures the average of the squares of 

errors, giving more weight to larger errors, 

thus providing a measure sensitive to outliers. 

The equation gives it: 

MAE =
1

n
∑ (yi − ŷi)

2
𝑛

𝑖=1
 

Where n is the number of observations 

yi are the actual values 

ŷi are the predicted values. 

3.0 RESULTS AND DISCUSSIONS 

3.1 Properties of Materials 

Table 3 summarizes the material properties 

used in this study. The specific gravity of fine 

aggregate was 2.59; this is supported by 

Ndahi et al., (2024) and Singh & Siddique, 

(2019). Crushed stones had a specific gravity 

of 2.71, which is closed to the findings of 

Agboola et al., (2024); while MPA had a 

specific gravity of 0.53. This finding aligns 

with previous research highlighting the 

suitability of aggregates with low specific 

gravity for LWC applications (Mehta & 

Monteiro, 2017). The compacted and 

uncompacted bulk densities of fine aggregate 

were 1525 Kg/m3 and 1340 Kg/m3, 

respectively. This is supported by Mehta & 

Monteiro, (2017). The compacted and 

uncompacted bulk densities for crushed stone 

were 1727 Kg/m3 and 1398 Kg/m3, 

respectively. The bulk density of coarse 

aggregate used in concrete typically falls 

within the range of 1200 to 1750 kg/m³ as 

confirmed by Kosmatka & Wilson, (2016). 

MPA's compacted and uncompacted bulk 

densities were 337 Kg/m3 and 212 Kg/m3, 

respectively. This finding was also confirmed 

by Gravina et al. (2021). Water absorption 

for crushed stone was 2.21%, and for MPA, 

it was 0.50%, indicating minimal porosity, 

which enhances concrete performance and 

durability. The aggregate impact values for 

crushed stone and MPA were 5.2% and 2.0%, 

respectively, and fall within the BS EN 1097-

2 standard limits. Aggregate crushing values 

were 6.6% for crushed stone and 3.20% for 

MPA, within the British standard BS 812: 

Part 110:1990 limits. 
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Table 3: Properties of Materials 

Materials 

Bulk Density (Kg/m3) Specific 

gravity 

(g) 

Water 

Absorption 

(%) 

Impact 

Value 

(%) 

Crushing 

Value (%) Compacted Uncompacted 

Sand 1525 1340 2.59 - - - 

Crushed 

Stone 
1727 1398 2.71 2.21 5.20 6.60 

MPA 337 212 0.53 0.50 2.00 3.20 

 

3.2 Effect of MPA as Partial 

Replacement of Coarse Aggregate in LWC 

MPA was introduced to replace conventional 

coarse aggregate at varying percentages: 0%, 

15%, 30%, and 45%. The properties of the 

produced specimens were evaluated for up to 

56 days to understand the effects of MPA 

inclusion on concrete performance. 

 

3.2.1 Workability 

Concrete workability was assessed using the 

slump test, targeting a 75 to 100 mm slump 

value. Analyzing the experimental results in 

Figure 3, it was observed that the highest 

slump value of 30 mm was achieved with a 

15% MPA mix, followed by the control and 

30% MPA mixes, each yielding a slump 

value of 20 mm. Conversely, a slump value 

of 10 mm was recorded for the 45% MPA 

mix. Notably, the higher slump value 

observed in the 15% MPA mix could be 

attributed to adding a superplasticizer in the 

concrete mix with MPA as a partial 

replacement of coarse aggregate. This 

addition aided in releasing trapped water in 

the interfacial transition zone, as affirmed by 

Jiang et al. (2020). Superplasticizers play a 

crucial role in mitigating the adverse effects 

of MPA on workability by enhancing particle 

dispersion and reducing water demand (Jiang 

et al., 2020). Higher MPA percentages 

required more excellent water content to 

maintain adequate workability. 

 

 

 

Figure 3: Slump result of concrete containing modified plastic aggregate (MPA 
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3.2.2 Density 

The average density of concrete specimens 

after 28 days showed that the density of 

concrete with MPA as a partial replacement 

of coarse aggregate was reduced. Referring to 

the experimental test results in Figure 4, it is 

evident that the addition of MPA in the 

concrete mix has caused a reduction in the 

density of the MPA concrete. The 28-day 

density of the control specimens was 2347 

kg/m³, followed by 15%, 30%, and 45% 

MPA samples with a density of 2135 kg/m³, 

1996 kg/m³, and 1895 kg/m³, respectively. 

This represents approximately a 9.03%, 

14.96%, and 19.26% reduction in density 

compared to the control samples This finding 

was also confirmed by Gravina et al., (2021). 

This reduction aligns with the structural 

lightweight concrete range specified by BS 

EN 206-1 (2013), making the 30% and 45% 

MPA mixes suitable for structural 

applications. 

 

Figure 4: Density of concrete containing MPA at 28 days 

3.2.3 Compressive Strength 

Figure 4 presents the result of the 

compressive strength test for lightweight 

concrete with MPA replacing 15%, 30%, and 

45% of conventional coarse aggregates with 

a water cement ratio of 0.52 for the control 

sample and 0.4 for the replacement samples, 

at 7 days, 14 days, 28 days and 56 days 

respectively; The results showed that 

replacing conventional aggregates with MPA 

led to a reduction in density and compressive 

strength. This reduction could be attributed to 

the variability in properties of MPA, such as 

size, shape and quality, which can lead to 

inconsistent performance in concrete 

mixtures, causing fluctuations in 

compressive strength (Raj et al., 2020). The 

control achieved the highest compressive 

strength of 32.59 N/mm² at 56 days. A linear 

reduction in compressive strength was 

observed for MPA concrete samples, with 

decreases of 9.33%, 16.14%, and 22.40% for 

15%, 30%, and 45% MPA content, 

respectively. A reduction in compressive 

strength was also noted at higher levels of 

MPA replacement, most likely due to the 

reduction in workability of the specimens at 

30% and 45% MPA replacement, making 

them difficult to compact. Smith et al. (2018) 

also reported that low workability can result 

in increased porosity and decreased strength 

of concrete. This can be attributed to the 

inability of the mix to flow and fill the mould 

correctly, which may have contributed to the 

reduction in the strength of lightweight 

concrete containing MPA compared to the 
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control samples. Despite this, all MPA 

lightweight concrete samples met the BS EN 

206:2000 minimum requirement of 17 

N/mm² for 28-day compressive strength of 

structural lightweight concrete. Therefore, 

MPA can produce structural lightweight 

concrete with up to 30% replacement without 

significant changes in compressive strength.  

 

Figure 4: Compressive strength of concrete containing MPA 

3.2.4 Ultrasonic Pulse Velocity (UPV) 
The UPV test results of the control sample 

and concrete containing 15%, 30%, and 45% 

MPA are depicted in Figure 5 below. The 

control sample exhibited the highest UPV 

readings on various days, while the 45% 

MPA samples showed the lowest UPV 

readings. Figure 5 shows that the control 

sample exhibited the highest UPV readings 

of 3822, 4061, 4261, and 4651 m/s at 7, 14, 

28, and 56 days, respectively. The 45% MPA 

samples showed the lowest UPV readings of 

2826, 3259, 3396, and 3792 m/s at 7, 14, 28, 

and 56 days, respectively. This reduction can 

be attributed to the increased porosity of the 

concrete due to the incorporation of MPA. 

The heightened porosity may create irregular 

paths for the ultrasonic waves, resulting in 

lower UPV measurements than control 

specimens (Razaqpur et al., 2015). However, 

all LWC samples with MPA replacement met 

the BS 1881-203:1995 minimum 

requirements for structural lightweight 

concrete. 
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Figure 5: Ultrasonic pulse velocity of concrete containing MPA 

3.3 Predicting Compressive Strength of MPA Concrete  

Table 6 shows the training and testing results for ANN, KNN, and RF models predicting the 

compressive strength of MPA concrete at various ages. 

 

Table 6: Performance Evaluation of Compressive Strength Models  

Models name 
Training results 

R2 MAE MSE 

ANN 0.9982 0.1775 0.1170 

KNN 1.00 0.001 0.001 

RF 0.85 2.51 9.22 

 Testing results 

ANN 1.00 0.0973 0.0294 

KNN 1.00 0.001 0.001 

RF 0.86 2.70 10.59 

 

Figures 9 to 12 illustrate that the ANN and 

KNN models closely predicted MPA 

concrete's measured water absorption values. 

The ANN model achieved R², MAE, and 

MSE values of 1.00, 0.0973, and 0.0294 for 

the testing dataset. The KNN model 

performed exceptionally, with R², MAE, and 

MSE values of 1.0, 0.001, and 0.001 for 

training and testing datasets. The RF model 

achieved R², MAE, and MSE values of 0.86, 

2.70, and 10.59 for the testing dataset as in 

Table 6, while Figures 13 and 14 illustrated 

the relationship between experimental test 

results and predicted and experimental test 

results versus predicted for the RF model. 
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Figure 9: Experimental test results versus predicted compressive strength for ANN model 

 

 

 
Figure 10: Relationship between experimental test results and predicted compressive 

strength for ANN model 
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Figure 11: Experimental test results versus predicted compressive strength for the KNN 

model 

 

 

 

 
Figure 12: Relationship between experimental test results and predicted compressive 

strength for the KNN model 
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Figure 13: Experimental test results versus predicted compressive strength for RF model 

 

 

 

 
Figure 14: Relationship between experimental test results and predicted compressive 

strength for RF model 
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4.0  CONCLUSION 

Both fine and coarse aggregates meet British 

Standards (BS EN 12620:2013, BS 812-1377 

(1970) , BS EN 1097-3:2018, BS EN 1097-2, 

BS 812: Part 110:1990 and BS EN 1097-

6:2013), for construction materials. The fine 

aggregate exhibits suitable fineness modulus, 

specific gravity, bulk density, aggregate 

impact value, and aggregate crushing value, 

ensuring its applicability for concrete 

production and other construction needs. 

Similarly, the coarse aggregate displays 

excellent quality with appropriate density, 

specific gravity, low water absorption, and 

high resistance to impact and crushing, 

indicating it is well-suited for durable and 

high-performance concrete structures. 

Modified plastic aggregate also complies 

with British Standards (BS EN 12620:2013), 

meeting grading requirements in sieve 

analyses. Its specific gravity, bulk density, 

high void content, and low impact and 

crushing values indicate it is a lightweight, 

durable material suitable for specific 

construction applications. Its low water 

absorption rate further enhances its suitability 

for moisture-sensitive environments, 

contributing to quality and longevity in 

various construction projects.  

Fresh MPA concrete at 15% replacement 

showed better workability than the control, 

whereas 45% replacement exhibited the 

lowest slump value due to MPA's irregular 

shape and rough surface texture affecting 

water flow. The use of MPA as a partial 

replacement for traditional aggregates led to 

a reduction in concrete density, ranging from 

9.03% to 19.26% for 15% to 45% 

replacement, highlighting its lighter nature. 

At 28 days of curing, the strength of MPA 

concrete decreased with higher replacement 

percentages, attributed to its lower rigidity 

compared to traditional coarse aggregates, 

with reductions ranging from 7.04% to 

20.30% for 15% to 45% replacement, 

respectively. This shows an inverse 

relationship between replacement percentage 

and strength properties. Predictive modelling 

using K-Nearest Neighbors (KNN) 

consistently provided the most accurate 

predictions for the compressive strength 

property of MPA concrete. KNN 

demonstrated superior performance with the 

lowest errors and highest R-squared (R²) 

scores across all evaluations with R², MAE, 

and MSE values of 1.0, 0.001, and 0.001 for 

training and testing datasets. Artificial Neural 

Networks (ANN) also showed predictive 

solid capabilities, serving as a reliable 

alternative to KNN with R², MAE, and MSE 

values of 1.00, 0.0973, and 0.0294 for the 

testing dataset. In contrast, Random Forest 

(RF) exhibited less accurate predictions, 

indicating a need for further refinement to 

improve its performance in predicting this 

material property with R², MAE, and MSE 

values of 0.86, 2.70, and 10.59 for the testing 

dataset. 
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