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Abstract
This paper presents the development and classification of audio source separation algorithms utilizing tim

frequency analysis techniques, specifically Wigner-Ville distributions (WVDs), compact kernel distributi
(CKD) and multi-directional distribution (MDD). These methods are integrated with a decision tr
classifier to enhance the separation of audio sources in noisy environments. The algorithms were tested «
the Al-generated audio signals across various signal-to-noise ratio (SNR) levels. The CKD methi
demonstrated exceptional performance, achieving a classification accuracy of 100% at 0dB to 15dB SN
for the multichannel Al-generated audio signals. This study highlights the effectiveness of the advanc
time-frequency analysis techniques CKD and MDD in improving audio source separation and their potenti
for real-time audio processing applications. The results indicate that these techniques can significant
enhance the clarity and quality of separated audio signals, providing an effective solution for tasks such
music source separation, speech enhancement, and environmental sound separation.
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1.0 INTRODUCTION

Audio source separation is a technology designed
to isolate one or more specific source signals
from an audio recording containing multiple
sound sources (Li et. al., 2022). This technology
is especially valuable in situations where audio
quality is compromised by background noise or
overlapping speakers. Its applications span
various industries, enhancing audio processing,
improving communication, and providing a
richer audio experience in noisy environments.
Notable applications include speech
communication, speech enhancement, hearing
aids, automatic speech recognition (ASR), music
separation in recording and production,
broadcasting and entertainment, surveillance
systems, assistive listening devices, and virtual
and augmented reality (Michelsanti et. al. 2021;
Martinek et. al. 2021; Richard et. al. 2023; Zhu
et. al. 2024).

However, traditional audio source separation
methods face significant challenges in achieving
accurate and efficient signal isolation.
Conventional techniques, such as Independent
Component Analysis (ICA) and Non-Negative
Matrix Factorization (NMF), often rely on strong
assumptions about the statistical independence of
sources or the sparsity of signals in the time-
frequency domain. These assumptions may not
hold in real-world scenarios with overlapping
speakers, complex noise profiles, or reverberant
environments, leading to degraded performance
(Jorgenson, 2022). Additionally, traditional
methods struggle to handle signals with highly
dynamic spectral structures or to adapt to
variations in noise characteristics, limiting their
effectiveness in practical applications

In many real-world scenarios, audio recordings
are frequently contaminated by background
noise, concurrent speakers, or reverberation,
severely impacting the quality and intelligibility
of the desired audio signals. This presents a

significant challenge for applications such as
speech communication, automatic speech
recognition (ASR), speech enhancement, music
production, and assistive listening devices.
Therefore, it is crucial to develop audio source
separation techniques capable of effectively
extracting the desired audio signals from noisy
environments. The primary motivation for
developing audio source separation algorithms is
to enhance audio processing in  noisy
environments, thereby improving the quality,
intelligibility, and user experience across various
audio applications. Background noise and
interfering speakers can impede effective
communication, reduce speech recognition
accuracy, and detract from speech enhancement
efforts. By isolating desired audio signals from
unwanted noise and interference, overall audio
quality can be significantly improved, leading to
better speech intelligibility, more accurate
speech recognition, and a more immersive audio
experience.The aim of this research was achieved
through the following objectives: first, to
configure multichannel noisy audio signals using
Al-generated audio, and second, to develop
source separation algorithms based on time-
frequency analysis and decision tree classifiers.

2 REVIEW OF RELATED WORK

In the realm of audio signal processing, several
recent research endeavours have illuminated
various aspects of speech enhancement, source
separation, and classification, each contributing
significantly to the field. This section reviews
some of the most recent works related to the
research.

A modified minimum mean square error
(MMSE) method for enhancing speech signals in
noisy mixtures was proposed (Tengtrairat et al.,
2016). Their method outperformed standard
MMSE and other existing methods in terms of
signal quality and intelligibility. Specifically, the
proposed enhancement method achieved an
average Perceptual Evaluation of Speech Quality
(PESQ) improvement of 27% and 19% over
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standard and modified MMSE methods,
respectively, across a range of input Signal-to-
Noise Ratios (SNRs). Additionally, the method
demonstrated an average improvement of 3.0 dB
(76%) for segmental SNR (SegSNR) and 0.4
(12%) for PESQ compared to noisy mixtures.
The study hinted at future research prospects
related to multi-channel source separation.

A blind source separation method suitable for
real-time speech and noise separation on
smartphones contributed to the field by
developing a computationally efficient method
(Bhat et al., 2019). Their approach integrated a
neural network-based sound source localization
method with Independent Vector Analysis (IVA)
to enhance efficiency and accuracy. Remarkably,
the proposed method achieved a 10-fold cross-
validation accuracy of 86.2% with a standard
deviation of 0.93%. The accuracy of Generalized
Cross Correlation (GCC) is around 44.1%.
Additionally, the Feed Forward Neural Network
(FNN)-based Direction of Arrival (DOA)
estimation (FNNDOA) method was evaluated
across various Signal-to-Noise Ratios (SNRs)
and noise types. The study highlighted the need
for further research aimed at improving
computational complexity and traditional IVA
under realistic scenarios, such as situations where
speakers change position while speaking, such as
during a presentation on a podium.

In 2019, a cooperative system leveraging
distributed microphone arrays and wearable
devices to enhance audio source separation and
improve listening performance was introduced
(Corey et al., 2019). Their work involved
deploying 160 microphones in a reverberant
room, where the system exhibited significant
improvements in source separation performance.
Notably, there was an approximate 5 dB
performance difference between the filters
designed  from unprocessed reference
microphone signals and those designed from
Independent Vector Analysis (IVA) estimates.
Furthermore, the study revealed a direct
correlation between separation Signal-to-Noise

Ratio (SNR) and enhancement SNR, with every
1 dB improvement in the separation SNR
providing about a 1 dB improvement in
enhancement SNR. To advance this research,
further investigations are warranted, especially
concerning separation methods capable of
effectively handling large numbers of sources in
highly reverberant environments by harnessing
spatial diversity.

Machine learning algorithms for real-time blind
audio source separation with natural language
detection were also evaluated (Alghamdi et al.,
2021). Conv-TasNet and Demucs algorithms
were assessed for the quality and execution time
of separation output signals, as well as the
effectiveness of natural language detection. Both
algorithms exhibited high accuracy and excellent
results in the separation process. Conv-TasNet
achieved the highest Signal-to-Distortion Ratio
(SDR) score of 9.21 for music at the (music &
female) experiment, and the highest SDR value
for the child signal is 8.14. The SDR score for
music at the (music & female) experiment is 7.8
during the Demucs algorithm, where the child
output signal has the highest SDR score of 8.15
for the same experiment. Future research
directions include diversifying training datasets,
exploring alternative separation algorithms using
deep learning approaches, and expanding the
range of data categories.

Another paper titled "Informed Audio Source
Separation with Deep Learning in Limited Data
Settings" contributed to the field in multiple ways
(Schulze-Forster, 2021). The study focused on
three primary aspects: Supervised Setting with
Limited Data, Text-Informed Singing Voice
Separation, and an Unsupervised Deep Learning
Approach. Baseline models achieved median
Signal-to-Distortion Ratio (SDR) scores of 3.0
dB and 3.33 dB for BL1 and BL2, respectively,
representing appropriate baselines given the
simplicity and limited training data. The
Percentage of Correctly Aligned Segments
(PCAS) exceeded 80% for SNRs of 0 dB and
above, making the proposed approach suitable
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for phoneme alignments in various datasets. have further improved source separation
Future research avenues include exploring performance, particularly in  reverberant

training objectives involving the reconstruction
of observed text and audio sequences, potentially
combining attention mechanisms and the
Connectionist Temporal Classification (CTC)
loss.

In a parallel study, AVLIT, an innovative Audio-
Visual Lightweight Iterative model designed for
audio-visual speech separation in noisy
environments, was introduced (Martel et al.,
2023). AVLIT employs a combination of audio
and video branches, both utilizing Asynchronous
Fully Recurrent Convolutional Neural Network
(A-FRCNN) blocks. The iterative design of
AVLIT allows for efficient and lightweight
processing while maintaining high separation
quality. AVLIT-8 and AVLIT-4 demonstrated
superior performance compared to Visual Voice
and dual-path recurrent neural network
(DPRNN), achieving roughly 1 dB and 0.5 dB
substantial improvements in Scale-Invariant
Signal-to-Distortion Ratio (SI-SDRi). These
results highlight the potential of AVLIT as a
practical solution for enhancing speech
separation in challenging acoustic environments.
Further investigation into AVLIT's behavior in
reverberant environments is needed to fully
assess its real-world applicability.

Recent advancements in audio signal processing
have demonstrated significant improvements in
speech enhancement, source separation, and
classification techniques. For instance, a
modified minimum mean square error (MMSE)
method has shown superior performance in
enhancing speech signals within noisy mixtures,
achieving substantial improvements in signal
quality and intelligibility compared to standard
methods. Additionally, a blind source separation
method designed for real-time applications on
smartphones has integrated neural network-
based sound source localization  with
Independent Vector Analysis (IVA), enhancing
both efficiency and accuracy. Cooperative
systems utilizing distributed microphone arrays

environments. Machine learning algorithms such
as Conv-TasNet and Demucs have also exhibited
high accuracy in real-time blind audio source
separation, demonstrating notable performance
in various noise scenarios. Moreover, the study
on "Informed Audio Source Separation with
Deep Learning in Limited Data Settings"
highlighted the efficacy of deep learning
approaches even with limited training data,
indicating potential for phoneme alignments and
other applications. The innovative Audio-Visual
Lightweight Iterative model (AVLIT) has shown
superior performance in audio-visual speech
separation under noisy conditions, underscoring

its practicality for challenging acoustic
environments.
Despite these advancements, there is a

discernible gap in the literature regarding the
classification of audio source channels using
time-frequency analysis coupled with a Decision
Tree Classifier (DTC). While existing research
has predominantly focused on enhancing and
separating audio sources, the specific challenge
of accurately identifying the number of channels
in an audio source remains underexplored. This
paper aims to address this gap by leveraging
time-frequency techniques alongside a Decision
Tree Classifier to improve the classification of
multi-channels audio source, thereby advancing
the field of audio signal processing.

3 METHODOLOGY

In this section, the methodology for the
classification of audio source channels using
time-frequency analysis and a Decision Tree
Classifier is meticulously detailed. The section
outlines the systematic approach undertaken to
achieve the research objectives, which include
configuring multichannel noisy audio signals
using Al-generated audio, developing source
separation algorithms based on advanced time-
frequency analysis techniques, and implementing
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a Decision Tree Classifier for accurate channel
identification.

3.1  Audio Source Separation

Several methods have been proposed for audio
source separation, including single-channel and
multichannel separation methods, as well as
methods for separating moving sound sources.
Single-channel separation methods are designed
to separate sources from a single audio channel,
while Multichannel separation methods use
multiple channels to separate sources (Gidlof &
Nyberg, 2023). Multichannel methods can be
further classified into time-domain and
frequency-domain  methods.  Time-domain
methods use spatial information to separate
sources, while frequency-domain methods use
spectral information(Li et al., 2023).

The audio signals, for the research, employed a
detail and comprehensive data collection strategy
for speech enhancement for High-quality audio
recordings was  captured,  meticulously
categorized by speaking scenarios in noisy
environments to construct the foundational
dataset. To diversify this dataset,They Al
generated audio signal base on the first objective,
were generated using Python software. The
single channel audios were then mixed together
to form the multichannel audio by concatenating
the individual audio signal using the MATLAB
software.

Additive White Gaussian Noise (AWGN) is a
type of noise commonly introduced into signals
within  communication systems. It is termed
"additive™ because it is added to the original
signal, "white" due to its consistent power
spectral density across all frequencies, and
"Gaussian™ because it follows a Gaussian
(normal) probability distribution. In the context
of audio signals, assessing performance
necessitates accounting for such noise. During
the signal pre-processing stage, a standard
AWGN model is employed to generate and inject
noise into all audio signals.The equation for the

output signal (y) is expressed as the sum of the
input signal (x) and the noise (n):

y = x + n (Cohen, 1995) 1)

where (y) represents the output signal, (X)
denotes the input signal, and (n) stands for the
AWGN. This approach ensures that the
developed audio source separation algorithm can
effectively handle and mitigate the impact of
noise, thereby enhancing audio processing in
noisy environments.

3.2  Time-Frequency Analysis/Distribution

Time-frequency analysis/distribution (TFD) is a
technique used in signal processing to analyse
and represent signals in both the time and
frequency domains. It provides a view of a signal
represented over both time and frequency,
allowing for the analysis of signals containing
multiple time-varying frequencies. (Ahmad et
al., 2024) Time-frequency analysis/distribution
techniques find applications in various areas,
including multichannel audio source separation,
music source separation, and speech separation.
The TFD used in this research are explain as
follows:

3.2.1 Wigner-Ville Distribution of a Signal
(WVD)

The Wigner-Ville Distribution (WVD) is a
powerful method for estimating the power
spectral function of a nonstationary signal
through a time-frequency energy distribution
approach. Initially introduced by Wigner and
later adapted by Ville for signal processing
applications (Boashash, 2016), the WVD is
denoted as P, WVD(t, f)and is defined as:

P,WVD(t,f) = [ z (t + E) z*(t —
2 el ()

where B, WVD(t, f),represents the Wigner-Ville
distribution of a signal at time (t) and frequency

M, z (t + %)is a complex-valued function
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typically indicating the analysing signal or
window function, andxis the complex conjugate.
While the theoretical evaluation from minus
infinity to plus infinity is impractical, a pseudo-
Wigner-Ville distribution (PWVD) mitigates this
by using a running window (Boashash, 2016):

P,PWVD(5,0) = [ h(D)z (t + g) 2 (t —
e izt (3)

where h(t)is the window function. The WVD
has unique kernel functions from the bilinear
generalized class of time-frequency distribution,
exhibiting excellent time-frequency aggregation,
particularly in low Signal-to-Noise Ratio (SNR)
conditions (Boashash, 2016).

The WVD process involves obtaining the
instantaneous autocorrelation function (IAF) and
converting it to a time-frequency distribution
using the Fourier transform(Boashash, 2016):

K,(tD) = z(t +2)z" (t ——) (4
P,LWVD(t D) = [° K, (tT) e 2™ dr (5)

However, the WVD suffers from limitations such
as inner artifacts and cross terms. To address
these, the windowed WVD (WWVD) is used,
incorporating a window function after obtaining
the IAF. The Hamming window is selected for its
ability to provide better frequency resolution and
side lobe suppression(Boashash, 2016):

Kyw(tT) = gw(® K, (£1) (6)
Pwwvp (6 = [ guw(Dz(t + )z (t -
~) eizmrge 7

Pwwvp (b)) = fjooo 0.54 —
046 cos(C) z (t + 1) z* (¢ — 1) e 2

(8)

Compact Kernel Distribution (CKD): The
Compact Kernel Distribution (CKD) method is
an advanced version of the pseudo-Wigner-Ville
Distribution (WVD), designed to provide a
compact support kernel window function that
effectively vanishes outside a specified range in
the ambiguity domain(Boashash, 2016). Unlike
Gaussian windows with infinite lengths, CKD
does not require truncation using rectangular
windows, preventing the loss of valuable
information. CKD is known for its superior
performance in suppressing cross-terms while
maintaining auto-term resolution, achieved by
combining compact support with flexible
adjustments to the kernel's shape and size
independently (Boashash, 2016):

g, v) =G, (v)g,(v) =
2 cD? + cE?

{6 ¢ eV2—p2 12—E2 |V|<D!|T |< E, (9)
0 otherwise

where v and t are the Doppler and lag windows
determined by parameters D and E, and
Ccontrols the shape. The kernel width in the
ambiguity domain is determined by prior
knowledge of the signal components. The
Instantaneous Autocorrelation Function (IAF) of
WVDs, represented as K, (t,t), is central to
CKD, and its Time-Frequency Distribution
(TFD) is given by (Boashash, 2016):

K,(t) = z(t +2)z" (t =) (10)
Pexo (6 = [7 86 D) * K, (61) e T2 dv
(11)
Where g(t, t)is obtained through:
g(t,t) = ffooog(v, T)e 12™Tdy

From this, the CKD TFD is:

Pao (D = [2 1% 12 g0z (u +

(12)

3.2.2 Compact Kernel Distribution (CKD)and ¢y | T —iomfr —i2
Multidirectional Kernel Distribution (MDD) E) z (u B ?) e e dudvdr - (13)
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The CKD performance can degrade for signals
with auto-terms oriented away from the time or
frequency axis in the (t,f) domain. To address
this, the Multidirectional Kernel Distribution
(MDD) can be used.

Multidirectional Kernel Distribution (MDD):
The Multidirectional Kernel Distribution (MDD)
is particularly suited for signals with energy
concentrated along multiple directions in the (t,f)
domain, such as multicomponent linear
frequency modulated (LFM) signals with
different nonzero chirp rates(Boashash, 2016).
To achieve high-resolution TFDs for such
signals, a rotation parameter is included in the
formulation of smoothing kernels (Boashash,
2016):

g@(v! T) =

o (v cos(G)l;'fsin(G))_1 (sin(Q)v-{Zcos(Q)r)

e
0
for| cos(6)v-sin(6)7|<D
for| sin(8)v+cos(0)T|<E
otherwise,

(14)

where 0 is the angle of the kernel with the
Doppler axis in the ambiguity domain, D is the
half-support of gg(v, ), and E is the half-length
along its principal direction. For signals with
multiple directions of energy concentration, the
smoothing is performed along multiple
directions, resulting in a summation of a
predetermined numberN,, of directional kernels
(Boashash, 2016):

g(vr T) = ;_D Z?I:D1 gel (U' T), (15)

The MDD TFD can be formulated using the I1AF:

K,(tT) = z(t+)z" (t =) (16)

P.mon(t 0 = [ 8t * K, (1) e 7™ de
(17)

where g(t, ) is derived as:

gt = [ go(v,1)e 7™dy
From this, the MDD TFD is:

P (6 ) = [ [ 7 go(w,1) 2 (u +

T T —3 —i
E) z* (u — ;) g2t o=i2mvT qudvdt

(18)

(19)

The parameters for CKD and MDD, such as the
kernel shape C, Doppler cut-off D, and lag cut-
off E, are chosen based on prior knowledge of the
signal components. Table 1 and Table 2 show the
ranges for these parameters. The CKD and MDD
approaches are implemented in MATLAB
functions like “tf_kernel_ckd” and
“tf_kernel_mdd", which generate the respective
kernels based on the specified parameters. The
IAF functions 'IAF_CKD" and 'IAF_MDD"
smooth the IAF in the lag domain using these
kernels, followed by applying CKD and MDD to
obtain the TFD

Table 1. C, D, E Range of Values for CKD
Kernel (Al-Sa’d et al., 2021)

SIN PARAMETERS RANGE OF VALUE

1 C [0, 3]
2 D [0, 1]
3 E [0, 1]

Table 2: C, D, E Range of Values for MDD
Kernel (Al-Sa’d et al., 2021)

SIN  PARAMETERS RANGE OF VALUE

1 C [0, 3]
2 D [0, 1]
3 E [0, 1]

By incorporating these methods, the CKD and
MDD approaches enhance time-frequency
analysis, particularly for signals with complex
energy distributions in the (t,f) domain.

;
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3.2.3 TFR Feature Extraction

Extracting features from Time-Frequency
Representations (TFR) allows for the
characterization of different aspects of the signal,
aiding in tasks like audio source separation and
classification (Sharma et al., 2020). TFR
extraction features like Spectral Centroid and
Spectral Bandwidth, selected for this research,
are commonly used to describe the distribution of
energy in the frequency domain over time.

Spectral Centroid: The Spectral Centroid is a
feature that represents the centre of mass of the
spectrum of a signal, providing information
about where the "centre" of the signal's frequency
content lies (Sharma et al., 2020). It is calculated
as the weighted mean of the frequencies present
in the signal, with higher values indicating a
higher concentration of energy towards higher
frequencies, and vice versa. Spectral Centroid is
a useful feature for audio analysis as it can help
differentiate between sounds with different
spectral characteristics, aiding in tasks like
instrument recognition and audio source
separation. In the context of developing an audio
source separation algorithm, the Spectral
Centroid helps in distinguishing between
different sources in a mixture based on their
frequency content over time. Mathematically, it
is represented as (Sharma et al., 2020):
£EIX(E D)

Centroid(t) = Z

Zef XS0 (20)

Spectral Bandwidth: Spectral Bandwidth is a
feature that describes the width of the frequency
range occupied by a signal and provides
information about the spread of energy across the
frequency spectrum (Sharma et al., 2020). It is
calculated as the standard deviation of the
frequencies around the Spectral Centroid,
reflecting how dispersed the frequencies are
around the centre of mass. Spectral Bandwidth is
useful for characterizing the timbral qualities of
audio signals, as signals with broader bandwidths

tend to sound brighter or noisier compared to
signals with narrower bandwidths. In the context
of audio source separation, Spectral Bandwidth
helps in distinguishing between sources with
different spectral shapes and can aid in separating
sources with overlapping frequency content.
Mathematically, it is represented as (Sharma et
al., 2020):

Zf(f—Centroid(t))2 [X(t.6)]
2ef XD

Bandwidth(t) = \/ (21)

By using Spectral Centroid and Spectral
Bandwidth features, this research enhances the
ability to analyse and separate audio sources
based on their distinct frequency characteristics
over time.

3.3 Classifiers in Audio Source

Separation

Classifiers are machine learning algorithms used
for various applications (Ahmed et al, 2024),
including playing a crucial role in developing
real-time audio source separation algorithms for
enhanced audio  processing in  noisy
environments. They can be trained on labelled or
unlabelled data and can be supervised,
unsupervised, or semi-supervised. Various types
of classifiers, including linear regression,
decision trees, random forests, support vector
machines, clustering algorithms, Principal
Component  Analysis (PCA), Independent
Component Analysis (ICA), self-training, co-
training, and multi-view learning, are utilized in
audio processing to achieve tasks like music
source separation, speech enhancement, and
environmental sound separation (Li et al., 2023).

Decision Trees in Audio Source Separation:
Decision trees, a type of supervised learning
algorithm, are used for both classification and
regression problems. They function by
recursively splitting the data into smaller subsets
based on the most significant features. This
process, known as bagging, involves using
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decision trees as parallel estimators. In
classification problems, the final result is
determined by the majority vote from each
decision tree, while in regression problems, the
prediction is the mean value of the target values
in the leaf node (Josephine et. al,, 2021; Costa &
Pedreira, 2023).

In this research, a binary decision tree was
employed, where each internal node has exactly
two outgoing edges, representing Yes/No
questions. The training set is split into two
disjoint subsets, D = Dy s + Dy,. The subset Dy,
is associated with the left branch of the split and
Dy, to the right branch. This splitting criterion is
applied recursively on each branch using only the
samples that reach that node until a stopping
criterion is met.

Decision trees are integral to the methodology,
offering an effective means of classification by
incorporating prior knowledge and handling
features of various scales. Their adaptability to
different data types and optimization of decision-
making by minimizing impurity through
appropriate questioning strategies make them
highly effective in this context. The system flow
chart illustrating this process is shown in Figure
1.

From Figure 1, the System Flow Chart above, the
program starts by adding a noise signal to theAl-
generated audio. Next, the Time-Frequency
Distribution (TFD) is performed. Further
processing involves feature extraction using the
spectral centroid and spectral bandwidth to
estimate their values. These values are then used
to set the upper and lower limits of the classifier
(Decision Tree Classifier). If the sum of the
squared spectral centroid and the spectral
bandwidth is greater than the lower limit, the
signal is classified as multi-channel. If not, the
program checks if this sum is less than the upper
limit. If it is, the signal is classified as double-
channel; otherwise, it is classified as single-
channel, and the process ends.

By leveraging these classifiers, particularly
decision trees, the research aims to enhance
audio source separation capabilities, contributing
to more efficient audio processing in diverse and
noisy environments.

Table 3: Simulation Set up Values for Lower and Upper Limits

SIGNAL TFD LOWER LIMIT (LL) UPPER LIMIT (UL)
Al Generated WVD 0.9460 0.9550

WWVD 0.9080 0.9150

CKD 0.9250 0.9280

MDD 0.8500 0.9100
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Figure 1: Audio Source Separation System Flow Chart
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3.4 Performance Analysis/ Simulation Set-Up
The algorithms developed to test the
accuracy of channel separation using various
time-frequency domain processing methods
for the Al-generated audio signals setups
incorporate all the previously discussed
steps, such as loading audio segments, adding
noise, applying a Hilbert transform, and
conducting processing and classification
tasks using different signal processing
methods including WVD, WWVD, CKD,
and MDD.

Finally, each TFD (WVD, WWVD, CKD, and
MDD) is analysed and visualized, assessing the
probabilities of detecting 1, 2, or 3 channels in
the audio signal across various Signal-to-Noise
Ratio (SNR) levels. Table 3 below shows the
Simulation Set-up Values for Lower and Upper
Limits obtained.

Table 3 above shows the lower and upper limit
values for multichannel audio sources used for
both Al-generated and audio recording signals.
These values are based on the TFR Feature
Extraction detailed discussed earlier, which
utilizes spectral centroid and spectral bandwidth

Time plot of Al audios,for 1st single channel audio
1 -

values. The upper and lower limit values were set
accordingly before classification was conducted.

4 RESULTS AND DISCUSSION

In this section, we present the results and discuss
the performance of Wigner-Ville Distribution
(WVD), Windowed Wigner-Ville Distribution
(WWVD), Compact Kernel Distribution (CKD),
and Multidirectional Kernel Distribution (MDD)
in the context of multichannel audio source
separation. Analysing their effectiveness under
varying Signal-to-Noise Ratio (SNR) conditions,
and evaluating their ability to detect and classify
1, 2, or 3 channels for the Al-generated audio
signals. Results are visualized through plots,
focusing on the impact of noise and the influence
of spectral centroid and spectral bandwidth on
classification  accuracy. The  discussion
highlights the strengths, limitations, and
practical implications of each method in noisy
environments.

4.1 Al Generated Audio Signals

Figure 2 below shows the time representation
plot for Al generated audio signals.

T T T

1 1 1
o 02 04 06

Amplitude

08 1 12 14

Time in (sec)

W T

Amplitude
o

a ! L L
)

02 04 06 [oX:]

Time plot of Al audios,for 2nd single channel audio
T - E

B o LT T T TN SRR

I T T

1 1 1 1
1 12 14 16 18

Time in (sec)

SEETUEPRTTRTTI TTTVITVIR

. .
~ bl LO-LLWM\%
1 1 L

02 04 06

Amplitude
o

08

Time plot of Al audios,for 3rd single channel audio
| . s

B T

1 1 1 1 ]
1 12 14 16 18

Time in (sec)

Amplitude

\ |
4l | | | 1

o 05 1 15 2

Time (sec)

25

Time plot of Al audios,for combined multichannel audio

I

T
L

1 1

3 35 4 45 5

Figure 2: The time plot of Al Generated Audio signal
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Figure 2 shows the time plot of the Al Generated audio signal for the individual single channel
audio and the combined multichannel audio. Examining the combine audio plot of Figure 2
shows that all single audio channels have been appropriately captured.

4.2  Time-Frequency Representations (TFR) Of The TFDs

Figure 3(a), which is the 3D plot of multichannel Al generated audio signal illustrates a three-
dimensional (3D) representation, specifically a waterfall plot, depicting the correlation between
power, time, and frequency in the typical audio signal utilizing WVD. The signal runs for duration of
4.5secs, a sampling frequency of 22KHz and SNR of 10dB as depicted in Figure 4.5. The spike is
power indicated presence of high speech sound which aids the identification, classification and
performance indication measurement of number of channels present in the signal.
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Figure 3 (b): 2D contour plot of multichannel Al generated audio signal

‘a Academy Journal of Science and Engineering 19(1)2025 Page |95
OPEN| ACCESS|
BY i This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)




Classification of Audio Source...

Sagir L....

=, CKD

= : . : :

= 2 ;

& #

S u

= , L.

a O

‘u: (0] o.s 1 2.5 3 3.5 I 5 4.5
Time in (sec)

Y] MDD

= ! 1 i

LM -f

gl W . : o , =)

I 0] o.s 1 1.5 2 2.5 3 3.5 4 4.5

Time in (sec)

Figure 3 (c): 2D contour plot of CKD, and MDD of multichannel Al generated audio signal

Frequency
b o]
T T
—=="=>
CCom——
———
—
=
=y
-

CKD
T

Frequency

08 0.85 0.9 0.95 1 1.05
Time

Figure 3 (d): Special Zoom of the 2D contour plot of CKD, and MDD of multichannel Al
generated audio signal

Figure 3 (b), is a 2D contour plot illustrating time
and frequency characteristics of the multichannel
Al generated audio signal, as depicted in Figure
3 (a), is presented using the Wigner-Ville
Distribution (WVD) and the Window Wigner-
Ville Distribution (WWVD). The visual
representation highlights the presence of cross
terms in the WVD plot, indicating interference
resulting from the interaction between the
primary signal and the accompanying noise. At
such, it shows the importance of mitigating cross
term effects for accurate signal analysis. The
WWVD plot, however, reveals a reduction in

cross term effects, suggesting improved signal
clarity and facilitating more precise feature
extraction.

For Figure 3 (c), it presents a 2D contour plot
illustrating the time and  frequency
characteristics of the CKD and MDD analyses
applied to the multichannel Al-generated audio
signal depicted in Figure 4.5, utilizing CKD and
MDD  methodologies. From the visual
representation, the CKD parameters C, D, and E
are set at specific values: C at 1.5, D at 0.1, and
E at 0.1. Analysis of various tests involving these
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parameters reveals that while parameter C can
vary between low and high values within its
range, parameters D and E perform optimally at
lower values, effectively reducing artifact
presence. while, increasing their values increases
the presence of artifact. For MDD, parameter C
is ideally maintained at a low value, with a value
of 0.1 employed in this instance. At higher
values, it leads to increased artifact presence.
Similarly, the threshold value can vary between
low and high ranges, but a low value of 0.1 is
preferred due to the nonlinearity of the audio
signal. When the threshold is high, the direction
of angle of the MDD becomes excessively
raised, complicating audio signal tracking.
Notably, both CKD and MDD analyses
demonstrate eradication of cross terms compared
to Figure 3 (b), undo, with a slight presence of
internal artifacts.

Figure 3 (d) shows a Special Zoom of the 2D
contour plot of CKD, and MDD time and
frequency plot of the same multichannel Al
generated audio signal of Figure 3 (c). The figure
shows what the signal consists and the more
circles inside each one indicates more frequency
at different level and power that have been
captured.

4.3  Classification Results of Audio Signals

The Audio signals are classified using the TFDs
considered for this research, the plot of the
classification accuracy and the discussion are as
follows.
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Figure 4 (a), (b), and (c): Classification
Accuracy Results of Al Generated Audio
Signals

The classification accuracy results depicted in
Figure 4 (a), (b), and (c) reveal interesting
variations across different scenarios. Firstly, the
consistency of 100% classification accuracy
across various Signal-to-Noise Ratio (SNR)
levels (0, 5, 10, 15 dB) for single and double-
channel configurations suggests robustness in
the performance of the TFD methods utilized.
However, the stark contrast observed in the
multi-channel scenario (c), where the MDD
method consistently yields a 0% classification
accuracy across all SNR levels, prompts further
investigation. The absence of differences in the
results of the TFDs, despite variations in SNR
levels, could stem from several factors. One
possibility is that the TFD methods employed
may have inherent limitations in effectively
distinguishing between signal and noise
components, resulting in consistent accuracy
regardless of SNR. Alternatively, it could
indicate that the features extracted by the TFD
methods do not significantly contribute to

classification accuracy in the context of the
dataset or classification task at hand. While
Regarding the MDD method yielding 0%
classification accuracy in the multi-channel
scenario, several hypotheses could be
considered. One explanation may be that the
multi-channel setup introduces complexities or
interferences that render the MDD method
ineffective in accurately capturing signal
characteristics. Additionally, limitations in the
MDD algorithm’s ability to handle multi-channel
data or challenges in parameter tuning for the
multi-channel scenario could contribute to the
observed results. Further analysis and
experimentation are warranted to elucidate the
underlying reasons for these observations and to
explore potential improvements or alternative
approaches to address the identified limitations.

5 CONCLUSION

In this research, the source separation algorithm
was developed using time-frequency analysis
techniques, specifically WvD, WWVD, CKD
and MDD, alongside a decision tree classifier.
The performance of these algorithms was
evaluated on the Al-generated multichannel
audiosignals under various Signal-to-Noise
Ratio (SNR) conditions. The results
demonstrated that the CKD-based approach
achieved a remarkable classification accuracy of
100% at 0dB to 15dB SNR for the multichannel
Al-generated audio signals. This high accuracy
underscores the efficacy of CKD in enhancing
audio processing in noisy environments. MDD
also showed significant promise in handling
signals with complex spectral structures. The
integration of these time-frequency distribution
methods with a decision tree classifier proved
effective in accurately identifying and separating
audio sources, highlighting their potential for
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real-time applications in audio processing and

source separation tasks.

Despite these promising results, several
limitations were identified. First, the study
relied solely on Al-generated audio signals,
which may not fully reflect the complexities
of real-world audio data. Additionally, the
performance of the algorithms at higher noise
levels (above 15dB SNR) was not explored,
leaving room for further evaluation in
extreme noise conditions. Future research
would try to address these limitations by
testing the algorithms on real-world audio
datasets with diverse noise characteristics
and by exploring their robustness under
higher SNR conditions. Furthermore, the
integration of advanced machine learning
techniques, such as deep learning-based
classifiers, could be investigated to further
enhance the accuracy and generalizability of
the proposed methods. This would contribute
to advancing the field of audio source
separation and its applications in real-world
scenarios.

Sagir L....
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