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Abstract 

This paper presents the development and classification of audio source separation algorithms utilizing time-

frequency analysis techniques, specifically Wigner-Ville distributions (WVDs), compact kernel distribution 

(CKD) and multi-directional distribution (MDD). These methods are integrated with a decision tree 

classifier to enhance the separation of audio sources in noisy environments. The algorithms were tested on 

the AI-generated audio signals across various signal-to-noise ratio (SNR) levels. The CKD method 

demonstrated exceptional performance, achieving a classification accuracy of 100% at 0dB to 15dB SNR 

for the multichannel AI-generated audio signals. This study highlights the effectiveness of the advanced 

time-frequency analysis techniques CKD and MDD in improving audio source separation and their potential 

for real-time audio processing applications. The results indicate that these techniques can significantly 

enhance the clarity and quality of separated audio signals, providing an effective solution for tasks such as 

music source separation, speech enhancement, and environmental sound separation. 

Keywords- Audio source separation, Time-frequency analysis, Wigner-Ville distribution (WVD), 

compact kernel distribution (CKD), multi-directional distribution (MDD), AI- generated audio signals, 

signal-to-noise ratio (SNR). 
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1.0  INTRODUCTION 

Audio source separation is a technology designed 

to isolate one or more specific source signals 

from an audio recording containing multiple 

sound sources (Li et. al., 2022). This technology 

is especially valuable in situations where audio 

quality is compromised by background noise or 

overlapping speakers. Its applications span 

various industries, enhancing audio processing, 

improving communication, and providing a 

richer audio experience in noisy environments. 

Notable applications include speech 

communication, speech enhancement, hearing 

aids, automatic speech recognition (ASR), music 

separation in recording and production, 

broadcasting and entertainment, surveillance 

systems, assistive listening devices, and virtual 

and augmented reality (Michelsanti et. al. 2021; 

Martinek et. al. 2021; Richard et. al. 2023; Zhu 

et. al. 2024). 

However, traditional audio source separation 

methods face significant challenges in achieving 

accurate and efficient signal isolation. 

Conventional techniques, such as Independent 

Component Analysis (ICA) and Non-Negative 

Matrix Factorization (NMF), often rely on strong 

assumptions about the statistical independence of 

sources or the sparsity of signals in the time-

frequency domain. These assumptions may not 

hold in real-world scenarios with overlapping 

speakers, complex noise profiles, or reverberant 

environments, leading to degraded performance 

(Jorgenson, 2022). Additionally, traditional 

methods struggle to handle signals with highly 

dynamic spectral structures or to adapt to 

variations in noise characteristics, limiting their 

effectiveness in practical applications 

In many real-world scenarios, audio recordings 

are frequently contaminated by background 

noise, concurrent speakers, or reverberation, 

severely impacting the quality and intelligibility 

of the desired audio signals. This presents a 

significant challenge for applications such as 

speech communication, automatic speech 

recognition (ASR), speech enhancement, music 

production, and assistive listening devices. 

Therefore, it is crucial to develop audio source 

separation techniques capable of effectively 

extracting the desired audio signals from noisy 

environments. The primary motivation for 

developing audio source separation algorithms is 

to enhance audio processing in noisy 

environments, thereby improving the quality, 

intelligibility, and user experience across various 

audio applications. Background noise and 

interfering speakers can impede effective 

communication, reduce speech recognition 

accuracy, and detract from speech enhancement 

efforts. By isolating desired audio signals from 

unwanted noise and interference, overall audio 

quality can be significantly improved, leading to 

better speech intelligibility, more accurate 

speech recognition, and a more immersive audio 

experience.The aim of this research was achieved 

through the following objectives: first, to 

configure multichannel noisy audio signals using 

AI-generated audio, and second, to develop 

source separation algorithms based on time-

frequency analysis and decision tree classifiers. 

2 REVIEW OF RELATED WORK 

In the realm of audio signal processing, several 

recent research endeavours have illuminated 

various aspects of speech enhancement, source 

separation, and classification, each contributing 

significantly to the field. This section reviews 

some of the most recent works related to the 

research. 

A modified minimum mean square error 

(MMSE) method for enhancing speech signals in 

noisy mixtures was proposed (Tengtrairat et al., 

2016). Their method outperformed standard 

MMSE and other existing methods in terms of 

signal quality and intelligibility. Specifically, the 

proposed enhancement method achieved an 

average Perceptual Evaluation of Speech Quality 

(PESQ) improvement of 27% and 19% over 
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standard and modified MMSE methods, 

respectively, across a range of input Signal-to-

Noise Ratios (SNRs). Additionally, the method 

demonstrated an average improvement of 3.0 dB 

(76%) for segmental SNR (SegSNR) and 0.4 

(12%) for PESQ compared to noisy mixtures. 

The study hinted at future research prospects 

related to multi-channel source separation. 

A blind source separation method suitable for 

real-time speech and noise separation on 

smartphones contributed to the field by 

developing a computationally efficient method 

(Bhat et al., 2019). Their approach integrated a 

neural network-based sound source localization 

method with Independent Vector Analysis (IVA) 

to enhance efficiency and accuracy. Remarkably, 

the proposed method achieved a 10-fold cross-

validation accuracy of 86.2% with a standard 

deviation of 0.93%. The accuracy of Generalized 

Cross Correlation (GCC) is around 44.1%. 

Additionally, the Feed Forward Neural Network 

(FNN)-based Direction of Arrival (DOA) 

estimation (FNNDOA) method was evaluated 

across various Signal-to-Noise Ratios (SNRs) 

and noise types. The study highlighted the need 

for further research aimed at improving 

computational complexity and traditional IVA 

under realistic scenarios, such as situations where 

speakers change position while speaking, such as 

during a presentation on a podium. 

In 2019, a cooperative system leveraging 

distributed microphone arrays and wearable 

devices to enhance audio source separation and 

improve listening performance was introduced 

(Corey et al., 2019). Their work involved 

deploying 160 microphones in a reverberant 

room, where the system exhibited significant 

improvements in source separation performance. 

Notably, there was an approximate 5 dB 

performance difference between the filters 

designed from unprocessed reference 

microphone signals and those designed from 

Independent Vector Analysis (IVA) estimates. 

Furthermore, the study revealed a direct 

correlation between separation Signal-to-Noise 

Ratio (SNR) and enhancement SNR, with every 

1 dB improvement in the separation SNR 

providing about a 1 dB improvement in 

enhancement SNR. To advance this research, 

further investigations are warranted, especially 

concerning separation methods capable of 

effectively handling large numbers of sources in 

highly reverberant environments by harnessing 

spatial diversity. 

Machine learning algorithms for real-time blind 

audio source separation with natural language 

detection were also evaluated (Alghamdi et al., 

2021). Conv-TasNet and Demucs algorithms 

were assessed for the quality and execution time 

of separation output signals, as well as the 

effectiveness of natural language detection. Both 

algorithms exhibited high accuracy and excellent 

results in the separation process. Conv-TasNet 

achieved the highest Signal-to-Distortion Ratio 

(SDR) score of 9.21 for music at the (music & 

female) experiment, and the highest SDR value 

for the child signal is 8.14. The SDR score for 

music at the (music & female) experiment is 7.8 

during the Demucs algorithm, where the child 

output signal has the highest SDR score of 8.15 

for the same experiment. Future research 

directions include diversifying training datasets, 

exploring alternative separation algorithms using 

deep learning approaches, and expanding the 

range of data categories. 

Another paper titled "Informed Audio Source 

Separation with Deep Learning in Limited Data 

Settings" contributed to the field in multiple ways 

(Schulze-Forster, 2021). The study focused on 

three primary aspects: Supervised Setting with 

Limited Data, Text-Informed Singing Voice 

Separation, and an Unsupervised Deep Learning 

Approach. Baseline models achieved median 

Signal-to-Distortion Ratio (SDR) scores of 3.0 

dB and 3.33 dB for BL1 and BL2, respectively, 

representing appropriate baselines given the 

simplicity and limited training data. The 

Percentage of Correctly Aligned Segments 

(PCAS) exceeded 80% for SNRs of 0 dB and 

above, making the proposed approach suitable 
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for phoneme alignments in various datasets. 

Future research avenues include exploring 

training objectives involving the reconstruction 

of observed text and audio sequences, potentially 

combining attention mechanisms and the 

Connectionist Temporal Classification (CTC) 

loss. 

In a parallel study, AVLIT, an innovative Audio-

Visual Lightweight Iterative model designed for 

audio-visual speech separation in noisy 

environments, was introduced (Martel et al., 

2023). AVLIT employs a combination of audio 

and video branches, both utilizing Asynchronous 

Fully Recurrent Convolutional Neural Network 

(A-FRCNN) blocks. The iterative design of 

AVLIT allows for efficient and lightweight 

processing while maintaining high separation 

quality. AVLIT-8 and AVLIT-4 demonstrated 

superior performance compared to Visual Voice 

and dual-path recurrent neural network 

(DPRNN), achieving roughly 1 dB and 0.5 dB 

substantial improvements in Scale-Invariant 

Signal-to-Distortion Ratio (SI-SDRi). These 

results highlight the potential of AVLIT as a 

practical solution for enhancing speech 

separation in challenging acoustic environments. 

Further investigation into AVLIT's behavior in 

reverberant environments is needed to fully 

assess its real-world applicability. 

Recent advancements in audio signal processing 

have demonstrated significant improvements in 

speech enhancement, source separation, and 

classification techniques. For instance, a 

modified minimum mean square error (MMSE) 

method has shown superior performance in 

enhancing speech signals within noisy mixtures, 

achieving substantial improvements in signal 

quality and intelligibility compared to standard 

methods. Additionally, a blind source separation 

method designed for real-time applications on 

smartphones has integrated neural network-

based sound source localization with 

Independent Vector Analysis (IVA), enhancing 

both efficiency and accuracy. Cooperative 

systems utilizing distributed microphone arrays 

have further improved source separation 

performance, particularly in reverberant 

environments. Machine learning algorithms such 

as Conv-TasNet and Demucs have also exhibited 

high accuracy in real-time blind audio source 

separation, demonstrating notable performance 

in various noise scenarios. Moreover, the study 

on "Informed Audio Source Separation with 

Deep Learning in Limited Data Settings" 

highlighted the efficacy of deep learning 

approaches even with limited training data, 

indicating potential for phoneme alignments and 

other applications. The innovative Audio-Visual 

Lightweight Iterative model (AVLIT) has shown 

superior performance in audio-visual speech 

separation under noisy conditions, underscoring 

its practicality for challenging acoustic 

environments. 

Despite these advancements, there is a 

discernible gap in the literature regarding the 

classification of audio source channels using 

time-frequency analysis coupled with a Decision 

Tree Classifier (DTC). While existing research 

has predominantly focused on enhancing and 

separating audio sources, the specific challenge 

of accurately identifying the number of channels 

in an audio source remains underexplored. This 

paper aims to address this gap by leveraging 

time-frequency techniques alongside a Decision 

Tree Classifier to improve the classification of 

multi-channels audio source, thereby advancing 

the field of audio signal processing. 

3 METHODOLOGY 

In this section, the methodology for the 

classification of audio source channels using 

time-frequency analysis and a Decision Tree 

Classifier is meticulously detailed. The section 

outlines the systematic approach undertaken to 

achieve the research objectives, which include 

configuring multichannel noisy audio signals 

using AI-generated audio, developing source 

separation algorithms based on advanced time-

frequency analysis techniques, and implementing 
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a Decision Tree Classifier for accurate channel 

identification.  

3.1 Audio Source Separation 

Several methods have been proposed for audio 

source separation, including single-channel and 

multichannel separation methods, as well as 

methods for separating moving sound sources. 

Single-channel separation methods are designed 

to separate sources from a single audio channel, 

while Multichannel separation methods use 

multiple channels to separate sources (Gidlöf & 

Nyberg, 2023). Multichannel methods can be 

further classified into time-domain and 

frequency-domain methods. Time-domain 

methods use spatial information to separate 

sources, while frequency-domain methods use 

spectral information(Li et al., 2023). 

The audio signals, for the research, employed a 

detail and comprehensive data collection strategy 

for speech enhancement for High-quality audio 

recordings was captured, meticulously 

categorized by speaking scenarios in noisy 

environments to construct the foundational 

dataset. To diversify this dataset,They AI 

generated audio signal base on the first objective, 

were generated using Python software. The 

single channel audios were then mixed together 

to form the multichannel audio by concatenating 

the individual audio signal using the MATLAB 

software. 

Additive White Gaussian Noise (AWGN) is a 

type of noise commonly introduced into signals 

within communication systems. It is termed 

"additive" because it is added to the original 

signal, "white" due to its consistent power 

spectral density across all frequencies, and 

"Gaussian" because it follows a Gaussian 

(normal) probability distribution. In the context 

of audio signals, assessing performance 

necessitates accounting for such noise. During 

the signal pre-processing stage, a standard 

AWGN model is employed to generate and inject 

noise into all audio signals.The equation for the 

output signal (y) is expressed as the sum of the 

input signal (x) and the noise (n): 

y =  x +  n (Cohen, 1995)  (1) 

where (y) represents the output signal, (x) 

denotes the input signal, and (n) stands for the 

AWGN. This approach ensures that the 

developed audio source separation algorithm can 

effectively handle and mitigate the impact of 

noise, thereby enhancing audio processing in 

noisy environments. 

3.2 Time-Frequency Analysis/Distribution 

Time-frequency analysis/distribution (TFD) is a 

technique used in signal processing to analyse 

and represent signals in both the time and 

frequency domains. It provides a view of a signal 

represented over both time and frequency, 

allowing for the analysis of signals containing 

multiple time-varying frequencies. (Ahmad et 

al., 2024) Time-frequency analysis/distribution 

techniques find applications in various areas, 

including multichannel audio source separation, 

music source separation, and speech separation. 

The TFD used in this research are explain as 

follows: 

3.2.1 Wigner-Ville Distribution of a Signal 

(WVD) 

The Wigner-Ville Distribution (WVD) is a 

powerful method for estimating the power 

spectral function of a nonstationary signal 

through a time-frequency energy distribution 

approach. Initially introduced by Wigner and 

later adapted by Ville for signal processing 

applications (Boashash, 2016), the WVD is 

denoted as 𝑃𝑧,𝑊𝑉𝐷(𝑡, 𝑓)and is defined as: 

Pz,WVD(t, f) = ∫ z (t +  
τ

2
) z∗(t −

∞

−∞

 
τ

2
)  e−j2πfτdτ    (2) 

where 𝑃𝑧,𝑊𝑉𝐷(𝑡, 𝑓),represents the Wigner-Ville 

distribution of a signal at time (t) and frequency 

(f), z (t +  
𝜏

2
)is a complex-valued function 
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typically indicating the analysing signal or 

window function, and∗is the complex conjugate. 

While the theoretical evaluation from minus 

infinity to plus infinity is impractical, a pseudo-

Wigner-Ville distribution (PWVD) mitigates this 

by using a running window (Boashash, 2016): 

Pz,PWVD(t, f) = ∫ h(τ)z (t +  
τ

2
) z∗(t −

∞

−∞

 
τ

2
)e−j2πfτdτ    (3) 

where h(τ)is the window function. The WVD 

has unique kernel functions from the bilinear 

generalized class of time-frequency distribution, 

exhibiting excellent time-frequency aggregation, 

particularly in low Signal-to-Noise Ratio (SNR) 

conditions (Boashash, 2016). 

The WVD process involves obtaining the 

instantaneous autocorrelation function (IAF) and 

converting it to a time-frequency distribution 

using the Fourier transform(Boashash, 2016): 

Kz (t, τ)  =  z (t +  
τ 

2
 ) z∗ (t −

 τ 

2
 )      (4) 

Pz,WVD(t, f) = ∫ Kz (t, τ) e−j2πfτdτ   
∞

−∞
(5) 

However, the WVD suffers from limitations such 

as inner artifacts and cross terms. To address 

these, the windowed WVD (WWVD) is used, 

incorporating a window function after obtaining 

the IAF. The Hamming window is selected for its 

ability to provide better frequency resolution and 

side lobe suppression(Boashash, 2016): 

Kz,w(t, τ)  =  gw(τ) Kz (t, τ)   (6) 

Pz,WWVD(t, f)  =  ∫ gw(τ) z (t +  
τ

2
 ) z∗ (t −

∞

−∞

 
τ

2
 ) e−j2πfτdτ   (7) 

Pz,WWVD(t, f)  =  ∫ 0.54 −
∞

−∞

0.46 cos (
2𝜋𝜏

𝑇
) z (t +  

τ

2
 ) z∗ (t −  

τ

2
 ) e−j2πfτdτ 

    (8) 

3.2.2 Compact Kernel Distribution (CKD) and 

Multidirectional Kernel Distribution (MDD) 

Compact Kernel Distribution (CKD): The 

Compact Kernel Distribution (CKD) method is 

an advanced version of the pseudo-Wigner-Ville 

Distribution (WVD), designed to provide a 

compact support kernel window function that 

effectively vanishes outside a specified range in 

the ambiguity domain(Boashash, 2016). Unlike 

Gaussian windows with infinite lengths, CKD 

does not require truncation using rectangular 

windows, preventing the loss of valuable 

information. CKD is known for its superior 

performance in suppressing cross-terms while 

maintaining auto-term resolution, achieved by 

combining compact support with flexible 

adjustments to the kernel's shape and size 

independently (Boashash, 2016): 

𝑔(𝑣, τ) = 𝐺1(𝑣)𝑔2(τ) =

{𝑒
2𝑐 

𝑐𝐷2

𝑒𝑉2−𝐷2+
𝑐𝐸2

τ2−𝐸2

0                        

|V|<𝐷,|𝜏 |< 𝐸,
otherwise

  (9) 

where ν and τ are the Doppler and lag windows 

determined by parameters D and E, and 

Ccontrols the shape. The kernel width in the 

ambiguity domain is determined by prior 

knowledge of the signal components. The 

Instantaneous Autocorrelation Function (IAF) of 

WVDs, represented as Kz (t, τ), is central to 

CKD, and its Time-Frequency Distribution 

(TFD) is given by (Boashash, 2016): 

Kz (t, τ)  =  z (t +  
τ 

2
 ) z∗ (t −

 τ 

2
 ) (10) 

Pz,CKD(t, f) = ∫ g(t, τ) ∗
∞

−∞
 Kz (t, τ) e−j2πfτdτ

               

(11) 

Where g(t, τ)is obtained through: 

g(t, τ) = ∫ 𝑔(v, τ)e−j2πvτdv
∞

−∞
        (12) 

From this, the CKD TFD is: 

Pz,CKD(t, f) = ∫ ∫ ∫ g(v, τ) z (u +
∞

−∞

∞

−∞

∞

−∞

 
τ 

2
) z∗ (u −

 τ 

2
) e−j2πfτ. e−j2πvτdudvdτ       (13) 
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The CKD performance can degrade for signals 

with auto-terms oriented away from the time or 

frequency axis in the (t,f) domain. To address 

this, the Multidirectional Kernel Distribution 

(MDD) can be used. 

 Multidirectional Kernel Distribution (MDD): 

The Multidirectional Kernel Distribution (MDD) 

is particularly suited for signals with energy 

concentrated along multiple directions in the (t,f) 

domain, such as multicomponent linear 

frequency modulated (LFM) signals with 

different nonzero chirp rates(Boashash, 2016). 

To achieve high-resolution TFDs for such 

signals, a rotation parameter is included in the 

formulation of smoothing kernels (Boashash, 

2016): 

𝑔𝜃(𝑣, 𝜏) =

{ 𝑒

𝑐

(
𝑣 cos(𝜃)−𝜏 sin(𝜃) 

𝐷
)−1 

𝑒

𝑐

(
sin(𝜃)𝑣+cos(𝜃)𝜏

𝐸
)

0                                                                                                            

  
 for| cos(𝜃)𝑣−sin(𝜃)𝜏|<𝐷
for| sin(𝜃)𝑣+cos(𝜃)𝜏|<𝐸

    otherwise,                                 

      (14) 

where θ is the angle of the kernel with the 

Doppler axis in the ambiguity domain, D is the 

half-support of 𝑔𝜃(𝑣, 𝜏), and E is the half-length 

along its principal direction. For signals with 

multiple directions of energy concentration, the 

smoothing is performed along multiple 

directions, resulting in a summation of a 

predetermined number𝑁𝐷 of directional kernels 

(Boashash, 2016): 

𝑔(𝑣, τ) =
𝑒𝑐

𝑁𝐷
∑ 𝑔𝜃𝑖(𝑣, 𝜏),

𝑁𝐷
𝑖=1   (15) 

The MDD TFD can be formulated using the IAF: 

Kz (t, τ)  =  z (t +  
τ 

2
 ) z∗ (t −

 τ 

2
 )  (16) 

Pz,MDD(t, f) = ∫ g(t, τ) ∗
∞

−∞
 Kz (t, τ) e−j2πfτdτ

                 

(17) 

where g(t, τ) is derived as: 

g(t, τ) = ∫ 𝑔𝜃(𝑣, 𝜏)e−j2πvτdv
∞

−∞
       (18) 

From this, the MDD TFD is: 

Pz,MDD(t, f) = ∫ ∫ ∫ 𝑔𝜃(𝑣, 𝜏) z (u +
∞

−∞

∞

−∞

∞

−∞

 
τ 

2
) z∗ (u −

 τ 

2
) e−j2πfτ. e−j2πvτ dudvdτ             

(19) 

The parameters for CKD and MDD, such as the 

kernel shape C, Doppler cut-off D, and lag cut-

off E, are chosen based on prior knowledge of the 

signal components. Table 1 and Table 2 show the 

ranges for these parameters. The CKD and MDD 

approaches are implemented in MATLAB 

functions like `tf_kernel_ckd` and 

`tf_kernel_mdd`, which generate the respective 

kernels based on the specified parameters. The 

IAF functions `IAF_CKD` and `IAF_MDD` 

smooth the IAF in the lag domain using these 

kernels, followed by applying CKD and MDD to 

obtain the TFD 

Table 1: C, D, E Range of Values for CKD 

Kernel (Al-Sa’d et al., 2021) 

S/N PARAMETERS RANGE OF VALUE 

1 C [0, 3] 

2 D [0, 1] 

3 E [0, 1] 

 

Table 2: C, D, E Range of Values for MDD 

Kernel  (Al-Sa’d et al., 2021) 

S/N PARAMETERS RANGE OF VALUE 

1 C [0, 3] 

2 D [0, 1] 

3 E [0, 1] 

 

By incorporating these methods, the CKD and 

MDD approaches enhance time-frequency 

analysis, particularly for signals with complex 

energy distributions in the (t,f) domain. 
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3.2.3 TFR Feature Extraction 

Extracting features from Time-Frequency 

Representations (TFR) allows for the 

characterization of different aspects of the signal, 

aiding in tasks like audio source separation and 

classification (Sharma et al., 2020). TFR 

extraction features like Spectral Centroid and 

Spectral Bandwidth, selected for this research, 

are commonly used to describe the distribution of 

energy in the frequency domain over time. 

Spectral Centroid: The Spectral Centroid is a 

feature that represents the centre of mass of the 

spectrum of a signal, providing information 

about where the "centre" of the signal's frequency 

content lies (Sharma et al., 2020). It is calculated 

as the weighted mean of the frequencies present 

in the signal, with higher values indicating a 

higher concentration of energy towards higher 

frequencies, and vice versa. Spectral Centroid is 

a useful feature for audio analysis as it can help 

differentiate between sounds with different 

spectral characteristics, aiding in tasks like 

instrument recognition and audio source 

separation. In the context of developing an audio 

source separation algorithm, the Spectral 

Centroid helps in distinguishing between 

different sources in a mixture based on their 

frequency content over time. Mathematically, it 

is represented as (Sharma et al., 2020): 

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑡) =
∑ f.|X(t,f)|f

∑ f.|X(t,f)|f
             (20) 

Spectral Bandwidth: Spectral Bandwidth is a 

feature that describes the width of the frequency 

range occupied by a signal and provides 

information about the spread of energy across the 

frequency spectrum (Sharma et al., 2020). It is 

calculated as the standard deviation of the 

frequencies around the Spectral Centroid, 

reflecting how dispersed the frequencies are 

around the centre of mass. Spectral Bandwidth is 

useful for characterizing the timbral qualities of 

audio signals, as signals with broader bandwidths 

tend to sound brighter or noisier compared to 

signals with narrower bandwidths. In the context 

of audio source separation, Spectral Bandwidth 

helps in distinguishing between sources with 

different spectral shapes and can aid in separating 

sources with overlapping frequency content. 

Mathematically, it is represented as (Sharma et 

al., 2020): 

Bandwidth(t) = √
∑ (f−Centroid(t))

2
|X(t,f)|f

∑ f.|X(t,f)|f
    (21) 

By using Spectral Centroid and Spectral 

Bandwidth features, this research enhances the 

ability to analyse and separate audio sources 

based on their distinct frequency characteristics 

over time. 

3.3  Classifiers in Audio Source 

Separation 

Classifiers are machine learning algorithms used 

for various applications (Ahmed et al, 2024), 

including playing a crucial role in developing 

real-time audio source separation algorithms for 

enhanced audio processing in noisy 

environments. They can be trained on labelled or 

unlabelled data and can be supervised, 

unsupervised, or semi-supervised. Various types 

of classifiers, including linear regression, 

decision trees, random forests, support vector 

machines, clustering algorithms, Principal 

Component Analysis (PCA), Independent 

Component Analysis (ICA), self-training, co-

training, and multi-view learning, are utilized in 

audio processing to achieve tasks like music 

source separation, speech enhancement, and 

environmental sound separation (Li et al., 2023). 

Decision Trees in Audio Source Separation: 

Decision trees, a type of supervised learning 

algorithm, are used for both classification and 

regression problems. They function by 

recursively splitting the data into smaller subsets 

based on the most significant features. This 

process, known as bagging, involves using 
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decision trees as parallel estimators. In 

classification problems, the final result is 

determined by the majority vote from each 

decision tree, while in regression problems, the 

prediction is the mean value of the target values 

in the leaf node (Josephine et. al,, 2021; Costa & 

Pedreira, 2023). 

In this research, a binary decision tree was 

employed, where each internal node has exactly 

two outgoing edges, representing Yes/No 

questions. The training set is split into two 

disjoint subsets, D = 𝐷𝑌𝑒𝑠 + 𝐷𝑁𝑜. The subset 𝐷𝑌𝑒𝑠 

is associated with the left branch of the split and 

𝐷𝑁𝑜 to the right branch. This splitting criterion is 

applied recursively on each branch using only the 

samples that reach that node until a stopping 

criterion is met. 

Decision trees are integral to the methodology, 

offering an effective means of classification by 

incorporating prior knowledge and handling 

features of various scales. Their adaptability to 

different data types and optimization of decision-

making by minimizing impurity through 

appropriate questioning strategies make them 

highly effective in this context. The system flow 

chart illustrating this process is shown in Figure 

1.  

From Figure 1, the System Flow Chart above, the 

program starts by adding a noise signal to theAI-

generated audio. Next, the Time-Frequency 

Distribution (TFD) is performed. Further 

processing involves feature extraction using the 

spectral centroid and spectral bandwidth to 

estimate their values. These values are then used 

to set the upper and lower limits of the classifier 

(Decision Tree Classifier). If the sum of the 

squared spectral centroid and the spectral 

bandwidth is greater than the lower limit, the 

signal is classified as multi-channel. If not, the 

program checks if this sum is less than the upper 

limit. If it is, the signal is classified as double-

channel; otherwise, it is classified as single-

channel, and the process ends. 

By leveraging these classifiers, particularly 

decision trees, the research aims to enhance 

audio source separation capabilities, contributing 

to more efficient audio processing in diverse and 

noisy environments. 

 

Table 3: Simulation Set up Values for Lower and Upper Limits 

 
SIGNAL TFD LOWER LIMIT (LL)  UPPER LIMIT (UL) 

AI Generated WVD 0.9460 0.9550 

WWVD 0.9080 0.9150 

CKD 0.9250 0.9280 

MDD 0.8500 0.9100 
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YES 

YES 

NO 

NO 

Figure 1: Audio Source Separation System Flow Chart 
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3.4  Performance Analysis/ Simulation Set-Up 

The algorithms developed to test the 

accuracy of channel separation using various 

time-frequency domain processing methods 

for the AI-generated audio signals setups 

incorporate all the previously discussed 

steps, such as loading audio segments, adding 

noise, applying a Hilbert transform, and 

conducting processing and classification 

tasks using different signal processing 

methods including WVD, WWVD, CKD, 

and MDD. 

Finally, each TFD (WVD, WWVD, CKD, and 

MDD) is analysed and visualized, assessing the 

probabilities of detecting 1, 2, or 3 channels in 

the audio signal across various Signal-to-Noise 

Ratio (SNR) levels. Table 3 below shows the 

Simulation Set-up Values for Lower and Upper 

Limits obtained. 

Table 3 above shows the lower and upper limit 

values for multichannel audio sources used for 

both AI-generated and audio recording signals. 

These values are based on the TFR Feature 

Extraction detailed discussed earlier, which 

utilizes spectral centroid and spectral bandwidth 

values. The upper and lower limit values were set 

accordingly before classification was conducted. 

4  RESULTS AND DISCUSSION 

In this section, we present the results and discuss 

the performance of Wigner-Ville Distribution 

(WVD), Windowed Wigner-Ville Distribution 

(WWVD), Compact Kernel Distribution (CKD), 

and Multidirectional Kernel Distribution (MDD) 

in the context of multichannel audio source 

separation. Analysing their effectiveness under 

varying Signal-to-Noise Ratio (SNR) conditions, 

and evaluating their ability to detect and classify 

1, 2, or 3 channels for the AI-generated audio 

signals. Results are visualized through plots, 

focusing on the impact of noise and the influence 

of spectral centroid and spectral bandwidth on 

classification accuracy. The discussion 

highlights the strengths, limitations, and 

practical implications of each method in noisy 

environments. 

4.1 AI Generated Audio Signals 

Figure 2 below shows the time representation 

plot for AI generated audio signals.

Figure 2: The time plot of AI Generated Audio signal 
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Figure 2 shows the time plot of the AI Generated audio signal for the individual single channel 

audio and the combined multichannel audio. Examining the combine audio plot of Figure 2 

shows that all single audio channels have been appropriately captured. 

4.2 Time-Frequency Representations (TFR) Of The TFDs 

Figure 3(a), which is the 3D plot of multichannel AI generated audio signal illustrates a three-

dimensional (3D) representation, specifically a waterfall plot, depicting the correlation between 

power, time, and frequency in the typical audio signal utilizing WVD. The signal runs for duration of 

4.5secs, a sampling frequency of 22KHz and SNR of 10dB as depicted in Figure 4.5. The spike is 

power indicated presence of high speech sound which aids the identification, classification and 

performance indication measurement of number of channels present in the signal. 

 

Figure 3 (a) 3D plot of multichannel AI generated audio signal 

 

Figure 3 (b): 2D contour plot of multichannel AI generated audio signal 



Classification of Audio Source…                                                                                                                              Sagir L.… 

 

                                           Academy Journal of Science and Engineering 19(1)2025                            P a g e  | 96 
                                            

                                           This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY) 

 

OPEN             ACCESS                        

 

Figure 3 (c): 2D contour plot of CKD, and MDD of multichannel AI generated audio signal 

Figure 3 (d): Special Zoom of the 2D contour plot of CKD, and MDD of multichannel AI 

generated audio signal 

Figure 3 (b), is a 2D contour plot illustrating time 

and frequency characteristics of the multichannel 

AI generated audio signal, as depicted in Figure 

3 (a), is presented using the Wigner-Ville 

Distribution (WVD) and the Window Wigner-

Ville Distribution (WWVD). The visual 

representation highlights the presence of cross 

terms in the WVD plot, indicating interference 

resulting from the interaction between the 

primary signal and the accompanying noise. At 

such, it shows the importance of mitigating cross 

term effects for accurate signal analysis. The 

WWVD plot, however, reveals a reduction in 

cross term effects, suggesting improved signal 

clarity and facilitating more precise feature 

extraction. 

For Figure 3 (c), it presents a 2D contour plot 

illustrating the time and frequency 

characteristics of the CKD and MDD analyses 

applied to the multichannel AI-generated audio 

signal depicted in Figure 4.5, utilizing CKD and 

MDD methodologies. From the visual 

representation, the CKD parameters C, D, and E 

are set at specific values: C at 1.5, D at 0.1, and 

E at 0.1. Analysis of various tests involving these 
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parameters reveals that while parameter C can 

vary between low and high values within its 

range, parameters D and E perform optimally at 

lower values, effectively reducing artifact 

presence. while, increasing their values increases 

the presence of artifact. For MDD, parameter C 

is ideally maintained at a low value, with a value 

of 0.1 employed in this instance. At higher 

values, it leads to increased artifact presence. 

Similarly, the threshold value can vary between 

low and high ranges, but a low value of 0.1 is 

preferred due to the nonlinearity of the audio 

signal. When the threshold is high, the direction 

of angle of the MDD becomes excessively 

raised, complicating audio signal tracking. 

Notably, both CKD and MDD analyses 

demonstrate eradication of cross terms compared 

to Figure 3 (b), undo, with a slight presence of 

internal artifacts.  

Figure 3 (d) shows a Special Zoom of the 2D 

contour plot of CKD, and MDD time and 

frequency plot of the same multichannel AI 

generated audio signal of Figure 3 (c). The figure 

shows what the signal consists and the more 

circles inside each one indicates more frequency 

at different level and power that have been 

captured. 

4.3 Classification Results of Audio Signals 

The Audio signals are classified using the TFDs 

considered for this research, the plot of the 

classification accuracy and the discussion are as 

follows.  

Figure 4 (a) 

  Figure 4 (b) 
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  Figure 4 (c) 

Figure 4 (a), (b), and (c): Classification 

Accuracy Results of AI Generated Audio 

Signals 

The classification accuracy results depicted in 

Figure 4 (a), (b), and (c) reveal interesting 

variations across different scenarios. Firstly, the 

consistency of 100% classification accuracy 

across various Signal-to-Noise Ratio (SNR) 

levels (0, 5, 10, 15 dB) for single and double-

channel configurations suggests robustness in 

the performance of the TFD methods utilized. 

However, the stark contrast observed in the 

multi-channel scenario (c), where the MDD 

method consistently yields a 0% classification 

accuracy across all SNR levels, prompts further 

investigation. The absence of differences in the 

results of the TFDs, despite variations in SNR 

levels, could stem from several factors. One 

possibility is that the TFD methods employed 

may have inherent limitations in effectively 

distinguishing between signal and noise 

components, resulting in consistent accuracy 

regardless of SNR. Alternatively, it could 

indicate that the features extracted by the TFD 

methods do not significantly contribute to 

classification accuracy in the context of the 

dataset or classification task at hand. While 

Regarding the MDD method yielding 0% 

classification accuracy in the multi-channel 

scenario, several hypotheses could be 

considered. One explanation may be that the 

multi-channel setup introduces complexities or 

interferences that render the MDD method 

ineffective in accurately capturing signal 

characteristics. Additionally, limitations in the 

MDD algorithm's ability to handle multi-channel 

data or challenges in parameter tuning for the 

multi-channel scenario could contribute to the 

observed results. Further analysis and 

experimentation are warranted to elucidate the 

underlying reasons for these observations and to 

explore potential improvements or alternative 

approaches to address the identified limitations. 

5 CONCLUSION 

In this research, the source separation algorithm 

was developed using time-frequency analysis 

techniques, specifically WVD, WWVD, CKD 

and MDD, alongside a decision tree classifier. 

The performance of these algorithms was 

evaluated on the AI-generated multichannel 

audiosignals under various Signal-to-Noise 

Ratio (SNR) conditions. The results 

demonstrated that the CKD-based approach 

achieved a remarkable classification accuracy of 

100% at 0dB to 15dB SNR for the multichannel 

AI-generated audio signals. This high accuracy 

underscores the efficacy of CKD in enhancing 

audio processing in noisy environments. MDD 

also showed significant promise in handling 

signals with complex spectral structures. The 

integration of these time-frequency distribution 

methods with a decision tree classifier proved 

effective in accurately identifying and separating 

audio sources, highlighting their potential for 
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real-time applications in audio processing and 

source separation tasks. 

Despite these promising results, several 

limitations were identified. First, the study 

relied solely on AI-generated audio signals, 

which may not fully reflect the complexities 

of real-world audio data. Additionally, the 

performance of the algorithms at higher noise 

levels (above 15dB SNR) was not explored, 

leaving room for further evaluation in 

extreme noise conditions. Future research 

would try to address these limitations by 

testing the algorithms on real-world audio 

datasets with diverse noise characteristics 

and by exploring their robustness under 

higher SNR conditions. Furthermore, the 

integration of advanced machine learning 

techniques, such as deep learning-based 

classifiers, could be investigated to further 

enhance the accuracy and generalizability of 

the proposed methods. This would contribute 

to advancing the field of audio source 

separation and its applications in real-world 

scenarios.   
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