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Abstract 
Groundwater level forecasting is essential for the sustainable management of water resources, 
especially water scarce regions such as the Sokoto Basin. This study utilises the application of 
machine learning algorithms, specifically Long Short-Term Memory (LSTM), eXtreme Gradient 
Boosting (XGBoost)and Random Forest (RF) algorithms to predict groundwater levels across six 
boreholes within the Sokoto Basin. Modelling was carried out for six boreholes located in the basin 
with groundwater level as target variable considering rainfall, soil moisture, temperature and 
humidity as feature variables. Model performance was evaluated using Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE) and coefficient of Determination (R2). Among the 
models, the XGBoost algorithm demonstrated the highest performance, producing predictions 
closely aligned with observed groundwater levels. Hyperparameter tuning via grid search further 
optimized its performance. The LSTM model also showed strong performance, particularly in 
capturing the peaks and valleys of the groundwater level time series. The RF model exhibited 
reliable performance across most locations. The study offers a practical framework for regions with 
limited funding for groundwater monitoring, enabling effective water resource management. This 
approach can support proactive measures such as water-use restrictions and drought alerts to prevent 
groundwater depletion, particularly during dry years, thereby contributing to the sustainability of 
water resources in the Sokoto Basin and similar regions. 
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1.0 INTRODUCTION 

Groundwater is a vital source of drinking 
water, irrigation, and industrial use. 
However, groundwater resources are 

under increasing pressure from 
overexploitation, land use, pollution, and 
climate change (Akintayo et al., 2022; 
Iqbal et al., 2021). Water usage and 
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management are inextricably linked to 
various facets of human life, 
encompassing personal, domestic, 
recreational, industrial, agricultural, and 
even luxurious demands. However, water 
also poses significant risks to humanity, 
stemming from droughts, floods, and the 
effects of climate change. This highlights 
the imperative for a strong and 
harmonious relationship between human 
civilization and water resources, which 
can only be achieved through thoughtful 
development, planning, and management 
of this precious natural asset (Zaresefat & 
Derakhshani, 2023). Understanding how 
these different weather conditions 
influence the aquifer’s recharge, the 
resulting groundwater levels and the 
knowledge about the groundwater 
variations can be used for quantifying its 
availability.  

In hydrology, groundwater modelling is 
an essential tool for forecasting and 
managing the behaviour of subsurface 
water resources (Tao et al., 2022). 
However, field data collection or 
monitoring of variables such as water 
levels, hydraulic conductivity, and water 
quality is often limited to a few locations 
due to constraints like time, cost, and 
safety. To address the challenge of 
unmeasured or unsampled sites, 
interpolation techniques are employed. 
These methods estimate values at 
unmonitored locations by leveraging 
spatial patterns and relationships derived 
from data collected at nearby sites. By 
filling gaps in data coverage, 
interpolation enhances the accuracy and 
utility of groundwater models, as 
demonstrated in previous studies 
(Almahawis, 2018). Algorithms for 

machine learning can be applied in 
situations where modelled phenomena are 
obscure, difficult to observe, or poorly 
understood. This is because their core 
capability is the ability to learn from 
empirical data (Deka, 2019), where he 
delves into the use of machine learning in 
various civil engineering research. Civil 
Engineers and everybody else interested 
in water resources will find the sudden 
growth in the application of machine 
learning algorithms in hydrology to be an 
intriguing and encouraging development. 
The introduction of big data and artificial 
intelligence in hydrology has resulted in 
several new advances in the sustainable 
development of groundwater resources in 
several parts of the world (Gaffoor et al., 
2020; Zaresefat & Derakhshani, 2023).  

For groundwater level forecasting, 
numerical, statistical, or physical based 
models are traditionally the main tool; 
however, they have some practical 
limitations, including the need for large 
amount of data and input parameters 
(Chen et al., 2019). In many cases, data is 
limited on one hand, and obtaining 
accurate predictions is more important 
than understanding underlying 
mechanisms (Kanyama et al., 2020). 
Statistical models, however, do not take 
nonlinear interactions into account 
(Arabameri et al., 2021), thus as a result 
artificial-intelligence-based machine-
learning (ML) models have been 
developed. ML approaches based on data 
mining have determined the conditions 
required to improve groundwater 
capacity. 

Machine learning methods have gained 
popularity in groundwater studies due to 
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their ability to handle large datasets and 
identify complex patterns. Decision trees, 
random forests, and neural networks are 
among the models frequently employed 
for groundwater level prediction. Neural 
networks, including deep learning 
models, have shown potential in 
capturing non-linear relationships and 
temporal dynamics in groundwater data . 
Djurovic et al., (2015), corroborated the 
aforementioned claim by demonstrating 
the predictive capability of Artificial 
Neural Network (ANN) and an Adaptive 
Neurofuzzy Inference System (ANFIS) in 
forecasting groundwater level changes 
using well data and other hydrological 
conditions as inputs. Mohanty et al. ( 
2010) used three ANN algorithms (GDX, 
LM, BR) and historical data from 19 sites 
to predict groundwater levels in a tropical 
humid region. One appealing feature of 
ANNs is their ability to develop a relation 
between the outputs and inputs of a 
process without the physics being 
explicitly furnished to them. 

 XGBoost has been particularly effective 
due to its gradient boosting framework, 
which improves prediction accuracy by 
combining multiple weak learners (Chen 
& Guestrin, 2016). Random forests, 
another ensemble method, are valued for 
their robustness and ability to handle 
overfitting (Breiman, 2001).  Studies by 
(Gaffoor et al., 2020; Vu et al., 2021; Chu 
et al., 2022) demonstrate the successful 
application of these ML methods in 
different geographical contexts, 
highlighting their adaptability and 
effectiveness. However, the performance 

of machine learning models is highly 
dependent on the quality and quantity of 
the input data, as well as the feature 
engineering process. 

This study aims to address the limitations 
of existing methods by exploring a data-
driven and adaptable approach for 
predicting groundwater levels and 
variations in the Sokoto Basin. To achieve 
this, the study investigates the 
relationships between groundwater levels 
and key environmental variables such as 
rainfall, soil moisture, temperature and 
humidity 

1.1 Study Area 
The Sokoto Basin in the northwest of 
Nigeria occupies approximately 65,000 
square kilometres and is situated between 
latitudes 10° and 14° N and longitudes 3° 
and 7° E. The region as seen in figure 1 
comprises of Sokoto and Kebbi States 
that is bordered on the north and west by 
Niger Republic and on the east by 
Zamfara state. The basin is divided into 
three main physiographic units: the 
coastal lowland of the Niger and lower 
Rima rivers, the Sokoto lowlands of the 
north/centre, and the uplands or high 
plains of the east and southeast averaging 
700 meters in height. The primary 
drainage system in the basin is composed 
of the Rima and Sokoto rivers (Wali et al., 
2023), which converge at Dundaye. Due 
to the influx of recharge during the dry 
season from several tributaries, base flow, 
springs, and the parched water body, the 
Sokoto River and its tributaries remain 
perennial in nature. 
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Figure 1: Location Map of Study Area 

The study area is a part of northwest 
Nigeria's Sokoto-Rima hydrogeological 
region. It represents the Nigerian portion 
of the Illumeden sedimentary basin (Wali 
et al., 2023), which is centred in Niger 
underlain by interbedded semi 
consolidated gravel, sand, clay, and some 
limestone. According to Obaje et al. 
(2020) the sedimentary sequences are 
stratigraphically subdivided from bottom 
to top into several formations: the late 
Jurassic to early Cretaceous Illo and 
Gundumi Formations, the Maestrichtian 
Rima Group, the late Paleocene Sokoto 
Group and the Eocene-Miocene Gwandu 

Formation (Figure 2). The study area falls 
under moderate to limited aquifer 
productivity classes with common 
borehole yields in the range 0.1 - 10l/s 
(Heckmann et al., 2022).  Particularly 
interesting is the Sokoto and Rima group 
falling under low to limited productive 
aquifers that can supply communities via 
motorised pumps and hand pumps 
(Figure 2). These are indicative of 
aquifers that are generally local and 
discontinuous, with low permeability and 
groundwater storage capacity. 
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Figure 2: Hydrogeological Map showing aquifer productivity of the Sokoto Basin as 
depicted in “Groundwater resources in the ECOWAS region” Map (The Federal Institute 
for Geosciences and Natural Resources [BGR] et al., 2022) 

2.0 MATERIALS AND METHODS 
2.1 Data Acquisition 
Daily groundwater level data were 
obtained from Nigeria Hydrological 
Services Agency (NIHSA) as the target 
variable. The groundwater level is 
measured in metres (m) above ground 
level. A total of 9 boreholes were found 
within the vicinity of the study area. 
However, not all boreholes were still 
active and the majority of them had 

significant missing data. It was therefore 
necessary to filter the datasets to select 
boreholes that would give us the best 
results. 
At first, the research did not include 
boreholes with fewer than five years of 
data and more than 30% of missing data. 
This meant that six boreholes in the basin 
could be used for modelling. The time 
series of two selected boreholes is shown 
in Figure 3.
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Figure 3: Groundwater fluctuation by month  

 

Rainfall, surface temperature, air 
humidity, and soil moisture were among 
the environmental variables used in this 
research that were sourced from the 
National Aeronautics and Space 
Administration (NASA) Langley 
Research Centre (LaRC) Prediction of 

Worldwide Energy Resource (POWER) 
Project funded through the NASA Earth 
Science/Applied Science Program. The 
data was last accessed on the 12/04/2024. 
Rainfall pattern by month is illustrated in 
Figure 4 showing peak rainfall in August 
and least rainfall in the month of 
November to April. 

Figure 4: Rainfall by month  
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2.2 Methods 
For groundwater level prediction, we 
employed three different machine 
learning models namely LSTM, 
XGBOOST and RF models. The entire 
workflow for this study, including data 
processing, model development, and 
analysis, was implemented in Python 
using Google Colab. The learned models 
are used to forecast groundwater levels.  
evaluates the model's performance using 
three different indices. Until a drop in 
these indices is noticed after a number of 
consecutive iterations, the models stay in 
the training phase.  
 
The tensorflow library in Python was 
used to model all the neural network 
architectures. Pandas, NumPy, Seaborn 
and Matplotlib were libraries imported 
for management, processing and 
visualisation of data.  The workflow, 
which consists of four major phases with 
unique sub-steps for each, is shown in 
Figure 5.  
 
The XGBRegressor function from the 
XGBoost library in Python was employed 
to model groundwater levels. The data 

was first scaled to standardize feature 
values, enhancing the model's 
performance. To fine-tune the model's 
hyperparameters, a parameter search was 
conducted using time series cross-
validation (TSCV) and grid search 
(gsearch) algorithm, systematically 
exploring different hyperparameter 
values to select the optimal combination. 
With the best hyperparameters identified, 
the XGBRegressor model was retrained 
on the training dataset. The calibrated 
model was then used to make predictions 
on the test dataset, ensuring accurate 
groundwater level forecasts.  
 
Employing the RandomForestRegressor 
module from Scikit-learn, the dataset was 
initially divided into training and testing 
datasets with an 80:20 split (Seidu et al., 
2023). The variables were then scaled 
before the model was fitted. In order to 
generate a prediction, the model was first 
trained using training data and then 
applied to test data. Next, the features that 
were most significant to the RF model 
were determined by looking at the feature 
importance.  

 

 

Figure 5: Study Flow chart for data selection and iteration of predictive model to be 
chosen.  
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2.2.1 Long Short-Term Memory 
Network (LSTM): A specialized ANN  

Long Short-Term Memory – usually just 
called “LSTM are a special kind of 
Recurrent Neural Network (RNN) that is 
designed to address the issue of vanishing 
and exploding gradients in traditional 
RNNs, which can hinder their ability to 
learn long-term dependencies(Chu et al., 
2022).  The specific calculation method of 
a single memory unit at time t is as 
follows. The internal structure of an 
LSTM memory unit at time t and its 
correlation with the state of neighbouring 
time memory units. Ascertain what will 
happen to the information before time t. 
In this stage, the forget gate will be used 
to erase any superfluous information. The 
sigmoid activation function σ is used by 
the forget gate. The Equation 1 by (Chu et 
al., 2022) is used to compute the forget 
gate 𝑓𝑓𝑡𝑡; 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [𝑋𝑋𝑡𝑡ℎ𝑡𝑡−1] + 𝑏𝑏𝑓𝑓� 
 

  

(1) 

Where the weight matrix is represented 
by 𝑊𝑊𝑓𝑓. the input gate 𝑋𝑋𝑡𝑡, and the bias of 
the forget gate is represented by 𝑏𝑏𝑓𝑓 

There are two steps involved in updating 
the unit status and deciding what to do 
with the new input data. First, the 
decision to update or disregard the new 
data is made by the sigmoid activation 
function. Second, the passed value's 
relevance level is determined by 
assigning weight to it via the tanh 
function. The input gate is obtained using 
Equation 2: 

 

𝑖𝑖𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ �𝑋𝑋𝑡𝑡,ℎ𝑡𝑡−1� + 𝑏𝑏𝑖𝑖� 
 

(2) 

Where 𝑊𝑊𝑐𝑐 stands for the weight matrix of 
the the calculation unit and 𝑏𝑏𝑏𝑏 stands for 
the offset term of the calculation unit. The 
cell state for the current input is then 
determined using ℎ𝑡𝑡−1 and 𝑋𝑋𝑡𝑡,, according 
to the Equation 3: 
 
𝐶𝐶𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐. [𝑋𝑋𝑡𝑡ℎ𝑡𝑡−1] + 𝑏𝑏𝑐𝑐) 

  
(3) 

Subsequently, the cell state, 𝐶𝐶𝑡𝑡, is 
determined using 𝐶𝐶𝑡𝑡−1 and 𝑓𝑓𝑡𝑡, as shown 
in Equation 4: 
 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 .𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡.𝐶𝐶𝑡𝑡�   

 
  

(4) 

To determine the memory unit's hidden 
layer state at time t. First, as can be seen 
in equation 5, 𝑂𝑂𝑡𝑡 in the forget gate selects 
which portion of the cell state is output by 
the activation function sigmoid.  
 
𝑂𝑂𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [𝑋𝑋𝑡𝑡ℎ𝑡𝑡−1] + 𝑏𝑏𝑜𝑜) 

 
  

(5) 

Ultimately, the formula indicates that the 
output of LSTM is determined by 
𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡)and the output of 𝑂𝑂𝑡𝑡 as shown in 
Equation 6. 
 

ℎ𝑡𝑡 = 𝑂𝑂𝑡𝑡 .  𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡) 
 
 

(6) 
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2.2.2 eXtreme Gradient Boost 
(XGBoost) 
One of the gradient boosting machine 
implementations is called XGBoost 
which is recognised as one of the finest 
performing algorithms applied for 
supervised learning (Osman et al., 2021). 
XGBoost is preferred by data scientists 
owing to fast execution speed out of core 
compute (Bedi et al., 2020; Nasir et al., 
2022; Osman et al., 2021). To minimise 
training errors the individual trees are 
continually trained on the residual output 
of the preceding trees using this iterative 
procedure (Ali et al., 2022). The equation 
7 is an example of the prediction's 
mathematical expression: 

𝑌𝑌� =  ∅(𝑋𝑋) =
1
𝑛𝑛
∑ 𝑓𝑓𝑘𝑘(𝑋𝑋)𝑛𝑛
𝑘𝑘=1 ,  

(7) 

where 𝑌𝑌�  is the forecasted value of the 
target, X denotes the input variable, K is 
a value that ranges from 1 to n, 𝑓𝑓𝑘𝑘 is the 
function between input and output 
variables, and n is the number of trained 
functions by boosting trees. To train 
multiple functions 𝑓𝑓𝑘𝑘, in XGBoost, the 
loss function must be minimised, as 
outlined in equation 8. 

 L(∅) = ∑ 𝑙𝑙(𝑦𝑦�𝑖𝑖, 𝑦𝑦𝑖𝑖) +𝑖𝑖
 ∑ 𝛺𝛺(𝑓𝑓𝑘𝑘)𝑘𝑘 , 

𝛺𝛺(𝑓𝑓𝑘𝑘) = 𝛾𝛾𝛾𝛾 +
1
2
⋅ 𝜆𝜆‖𝜔𝜔‖2 

 

(8) 
 
 

(9) 

Where, L(∅) is the regularised function, i 
is the loss function measurement between 
𝑦𝑦�𝑖𝑖 (prediction value) and 𝑦𝑦𝑖𝑖 (actual 
value). where Ω (equation 9) is a 
regularisation factor that keeps the model 
from becoming less overfitting and error-
prone by preventing the construction of 
more trees. 𝜔𝜔 is the score vector on the 

leaf, 𝜆𝜆 is the penalty parameter, T is the 
number of leaves, and 𝛾𝛾 is the complexity 
of the leaf. 

 

2.2.3 Random Forest (RF) 

Random Forest regression is an ensemble 
of decision trees DT (based on the results 
of multiple decision trees). Using a 
subsample of the dataset, each tree is 
trained and final value is given by 
averaging the whole ensemble. The final 
result of the RF algorithm is estimated 
from the result of each DT (Arabameri et 
al., 2021). This is achieved by using 
different predictive parameters in each 
generated tree and also by resampling 
data with replacement (W. Chen et al., 
2019). Equation 10 may be used to 
determine the regression's concluding 
outcomes. 
 

𝑦𝑦�(𝑥𝑥𝑖𝑖)  =
1
𝐵𝐵
∑ 𝑇𝑇𝑏𝑏(𝑥𝑥𝑖𝑖)𝐵𝐵
𝑏𝑏=1  ,    (10) 

A RF model has two user-defined 
parameters: B, which denotes the number 
of trees in the forest, and T, which denotes 
the number of characteristics that are used 
to divide the nodes. Where, y is the target 
variables and x are the feature variables 

2.3 Evaluation Criteria 
The effectiveness of machine learning 
models in representing the data is 
assessed by evaluating their performance 
with various metrics (Lazzeri, 2021). The 
model is refined in response to feedback, 
iteratively, until the target accuracy is 
attained.  

The study compared the performance of 
three machine learning models—LSTM 
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(Long Short-Term Memory), XGBoost 
(Extreme Gradient Boosting), and 
Random Forest (RF)—for predicting 
groundwater levels in the Sokoto Basin. 
The models were evaluated based on 
Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and the 
Coefficient of Determination (R²) which 
are expressed in equations 11 – 13 
(Shakya et al., 2022; Yi et al., 2024). The 
number of samples available is indicated 
by n, and the observed data and mean 
observed data are represented by Oi and 

𝑂𝑂� respectively. The predicted values and 
mean predicated value are represented by 
Pi and 𝑃𝑃� (model output). 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛

 ∑ |𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖|𝑛𝑛
𝑡𝑡=1                   (11) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑛𝑛

 ∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2 𝑛𝑛
𝑖𝑖=0           (12) 

𝑅𝑅2 = �∑ (𝑂𝑂𝑖𝑖 − 𝑂𝑂�).(𝑃𝑃𝑖𝑖 − 𝑃𝑃�) 𝑛𝑛
𝑖𝑖=1 �2

∑ (𝑂𝑂𝑖𝑖 − 𝑂𝑂�)𝑛𝑛
𝑖𝑖=1

2 ∑ (𝑃𝑃𝑖𝑖 − 𝑃𝑃�)2 𝑛𝑛
𝑖𝑖=0

                 (13) 

 

 

3.0 RESULTS AND DISCUSSION 

3.1 Model Performance Comparison 
The XGBoost algorithm outperformed 
the other models with the lowest MAE, 
RMSE and a mean R² score of up to 0.849 
across all boreholes as shown in Table 1. 
It outperformed the LSTM algorithm at 
four of the borehole sites. Among the 
three algorithms tested, XGBoost took the 
longest to build due to the use of the grid 
search tool for hyperparameter 
optimization, and it also recorded the 
highest scores for four borehole sites. 

The LSTM algorithm, while typically 
suited for time series data, performed less 
effectively in this context, possibly due to 
the complexity and noisiness of the 
groundwater data. The model recorded an 
average R² score of 0.765 across all 
boreholes. It also had the lowest MAE 
and RMSE for the Kangiwa and Marake 

sites, outperforming the XGBoost model 
in these areas. Among the three 
algorithms tested, the LSTM model 
required the least computational time to 
build. 

The RF regression tree also 
performed well at three sites, achieving 
an R² score greater than 0.5 for the 
boreholes tested. However, it had the 
lowest performance among the three 
algorithms. The RF model does not rely 
on the importance assigned by a single 
decision tree but rather selects features 
randomly during training. Overall, the 
model's performance was reasonable. 

Overall, XGBoost consistently 
outperforms other models in most 
locations, particularly in terms of MAE 
and RMSE, and achieves higher R² 
values, indicating better fit and predictive 
accuracy. LSTM also performs well but is 
generally outperformed by XGBoost. 
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Table 1: Comparison of Evaluation Metrics of the Three ML Models employed in the 
Sokoto Basin. The top-performing model is marked in blue 

LOCATION METRIC LSTM XGBOOST RF 
KANGIWA MAE 0.622 0.757 2.198 

RMSE 0.818 2.086 2.662 
R²  0.972 0.774 0.633 

MARNONA MAE 2.311 0.747 4.277 
RMSE 3.463 2.858 5.647 
R²  0.624 0.745 0.005 

BKEBBI MAE 0.270 0.090 0.456 
RMSE 0.309 0.188 0.690 
R²  0.850 0.944 0.239 

MARAKE MAE 0.234 0.214 0.793 
RMSE 0.242 0.563 1.019 
R²  0.495 -1.714 -7.895 

ASARE MAE 0.082 0.016 0.119 
RMSE 0.110 0.051 0.172 
R²  0.811 0.961 0.547 

TJEGA MAE 0.425 0.075 0.673 
RMSE 0.586 0.254 0.898 
R²  0.838 0.971 0.632 

 

Figure6: Bar Graph Showing Model Averages 

0.0 0.5 1.0 1.5 2.0

XGBOOST

LSTM

RF

R² RMSE MAE
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3.2 Feature Importance  
The best performing model, the XGBoost 
was particularly utilized to assess the 
importance of various input parameters. 
By analysing the feature importance 
scores generated by XGBoost, we 
constructed input combinations using the 
most influential parameters, as illustrated 
in Figure 7.  

The XGBoost analysis revealed that soil 
moisture is the most critical factor in 
predicting groundwater levels, followed 
by temperature and humidity. 
Interestingly, rainfall was found to be the 
least significant parameter according to 
the importance scores assigned by 
XGBoost, suggesting that its influence on 
groundwater levels in the study area is 
minimal compared to the other factors.

 

Figure 7: Analysis of Feature Importance using XGBoost Model  

 

Finally, rainfall is the feature that 
recorded the lowest correlation score of 
0.08. Despite the expectation that rainfall 
would have a higher correlation score due 
to its role in increasing water levels, the 
results did not align with this assumption. 
Similar study by Kanyama et al. (2020) 
experienced the same phenomena which 
prompted the use of decomposed signals 

of the time series which is common 
practice in machine learning. The 
significant noise in the dataset (see Figure 
4) led to lower scores for the actual 
rainfall values, affecting the feature’s 
ability to capture relationships effectively 
(Gibson, 2020)  
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3.2.1 Implementation of LSTM 
The LSTM model was trained using the 
training dataset and then applied to the 
test dataset for predictions. The 
hyperparameters for LSTM model 
including the learning rate, hidden unit 
and optimizer to achieve the best 
performance were set through a trial-and-
error method for groundwater level 
forecasting across different wells. 
Figure 8 expresses the comparison 
between the actual and predicted 
groundwater levels using the LSTM 
model for various boreholes, highlighting 

the model's performance. It means that 
LSTM model provides accurate 
predictions, effectively capturing the 
peaks and valleys of the observed 
groundwater levels and closely aligning 
with the actual data points. In the 
Kangiwa borehole, the LSTM model's 
predictions match the actual groundwater 
levels closely, as indicated by the MAE of 
0.62 and RMSE of 0.81, resulting in an R² 
value of 0.97. This level of precision is 
also evident in the other boreholes asides 
from Marnona where it could not retrace 
after capturing the peaks. 

Asare 

 

Kangiwa 

 
Birnin kebbi 

 

Marake 

 
Marnona 

 

Tiridin Jega 

 

Figure 8: Time-series plot comparing the actual and predicted groundwater levels at 
selected boreholes using LSTM 
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3.1.2 Implementation of XGBOOST 
The XGBOOST prediction graphs exhibit 
random peaks due to the model's 
sensitivity to noise, unlike the smoother 
predictions produced by the LSTM 
model. This noise-induced variability is 
particularly evident in the Marnona and 
Marake sites (see Figure 9). Despite this, 

the models overall yielded strong 
performance, as reflected in the error 
indices, with MAE ranging from 0.016 to 
0.757m and RMSE ranging from 0.051 to 
2.859m. Figure 9 plots the ground truth 
values for groundwater level against the 
predicted values.  

Asare 

 

Kangiwa 

 
Birnin Kebbi 

 

Marake 

 

Marnona 

 
 

Tiridin Jega 

 

Figure 9: Time-series plot comparing the actual and predicted groundwater levels at 
selected boreholes using XGBoost 

2.2.3 Implementation of Random 
Forest Model 
The Random Forest is the last method that 
was implemented on our dataset and 
Figure 10 illustrates the performance of 

the Random Forest (RF) model across the 
six borehole locations, demonstrating its 
effectiveness in predicting groundwater 
levels. As seen in Figure 4.4, the model 
predictions exhibited noticeable 
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variations in their trends, failing to 
capture the underlying gradual pattern in 
groundwater levels with the utmost 
precision which can be attributed to 
hyperparameter tuning. This was 
particularly evident in the case of the 
Marake borehole, where the R² value of -
7.895 presented a significant outlier. 
Nevertheless, the overall performance of 

the models was deemed to be satisfactory. 
This assertion is corroborated by the error 
metrics, which indicate that MAE values 
ranged between 0.016 and 0.757m, while 
RMSE values fell between 0.051 and 
2.859m. The models were able to estimate 
groundwater levels with an acceptable 
degree of accuracy, despite the inherent 
complexities of the system. 

Asare 

 

Kangiwa 

 
Birnin kebbi 

 

Marake 

 
Marnona 

 

Tiridin Jega 

 

Figure 10: Time-series plot comparing the actual and predicted groundwater levels at 
selected boreholes using RF 
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4.0 CONCLUSION 
This study evaluated the application of 
machine learning methods for predicting 
groundwater levels in the Sokoto Basin. A 
comparative analysis of different machine 
learning models demonstrated that 
XGBoost effectively predicts groundwater 
levels using inputs such as precipitation, 
rainfall, temperature, soil moisture, and 
humidity. The LSTM model also showed 
strong performance, particularly in 
capturing the peaks and valleys of the 
groundwater level time series, with MAE 
and RMSE values ranging from 0.016 – 
0.757m and 0.051 – 2.859m, respectively. 
The RF model exhibited reliable 
performance across most locations. 
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