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Abstract

Groundwater level forecasting is essential for the sustainable management of water resources,
especially water scarce regions such as the Sokoto Basin. This study utilises the application of
machine learning algorithms, specifically Long Short-Term Memory (LSTM), eXtreme Gradient
Boosting (XGBoost)and Random Forest (RF) algorithms to predict groundwater levels across six
boreholes within the Sokoto Basin. Modelling was carried out for six boreholes located in the basin
with groundwater level as target variable considering rainfall, soil moisture, temperature and
humidity as feature variables. Model performance was evaluated using Mean Absolute Error
(MAE), Root Mean Square Error (RMSE) and coefficient of Determination (R?). Among the
models, the XGBoost algorithm demonstrated the highest performance, producing predictions
closely aligned with observed groundwater levels. Hyperparameter tuning via grid search further
optimized its performance. The LSTM model also showed strong performance, particularly in
capturing the peaks and valleys of the groundwater level time series. The RF model exhibited
reliable performance across most locations. The study offers a practical framework for regions with
limited funding for groundwater monitoring, enabling effective water resource management. This
approach can support proactive measures such as water-use restrictions and drought alerts to prevent
groundwater depletion, particularly during dry years, thereby contributing to the sustainability of
water resources in the Sokoto Basin and similar regions.
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1.0 INTRODUCTION under  increasing  pressure  from
overexploitation, land use, pollution, and
climate change (Akintayo et al., 2022;
Igbal et al., 2021). Water usage and

Groundwater is a vital source of drinking
water, irrigation, and industrial use.
However, groundwater resources are
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management are inextricably linked to
various  facets of human life,
encompassing  personal,  domestic,
recreational, industrial, agricultural, and
even luxurious demands. However, water
also poses significant risks to humanity,
stemming from droughts, floods, and the
effects of climate change. This highlights
the imperative for a strong and
harmonious relationship between human
civilization and water resources, which
can only be achieved through thoughtful
development, planning, and management
of this precious natural asset (Zaresefat &
Derakhshani, 2023). Understanding how
these different weather conditions
influence the aquifer’s recharge, the
resulting groundwater levels and the
knowledge about the groundwater
variations can be used for quantifying its
availability.

In hydrology, groundwater modelling is
an essential tool for forecasting and
managing the behaviour of subsurface
water resources (Tao et al., 2022).
However, field data collection or
monitoring of variables such as water
levels, hydraulic conductivity, and water
quality is often limited to a few locations
due to constraints like time, cost, and
safety. To address the challenge of
unmeasured or  unsampled  sites,
interpolation techniques are employed.
These methods estimate values at
unmonitored locations by leveraging
spatial patterns and relationships derived
from data collected at nearby sites. By
filling gaps in data coverage,
interpolation enhances the accuracy and
utility of groundwater models, as
demonstrated in  previous  studies
(Almahawis, 2018). Algorithms for
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machine learning can be applied in
situations where modelled phenomena are
obscure, difficult to observe, or poorly
understood. This is because their core
capability is the ability to learn from
empirical data (Deka, 2019), where he
delves into the use of machine learning in
various civil engineering research. Civil
Engineers and everybody else interested
in water resources will find the sudden
growth in the application of machine
learning algorithms in hydrology to be an
intriguing and encouraging development.
The introduction of big data and artificial
intelligence in hydrology has resulted in
several new advances in the sustainable
development of groundwater resources in
several parts of the world (Gaffoor et al.,
2020; Zaresefat & Derakhshani, 2023).

For groundwater level forecasting,
numerical, statistical, or physical based
models are traditionally the main tool;
however, they have some practical
limitations, including the need for large
amount of data and input parameters
(Chen et al., 2019). In many cases, data is
limited on one hand, and obtaining
accurate predictions is more important
than understanding
mechanisms (Kanyama et al.,, 2020).
Statistical models, however, do not take
nonlinear interactions into account
(Arabameri et al., 2021), thus as a result
artificial-intelligence-based machine-
learning (ML) models have been
developed. ML approaches based on data
mining have determined the conditions
required  to

underlying

improve  groundwater

capacity.

Machine learning methods have gained
popularity in groundwater studies due to
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their ability to handle large datasets and
identify complex patterns. Decision trees,
random forests, and neural networks are
among the models frequently employed
for groundwater level prediction. Neural
networks, including deep learning
models, have shown potential in
capturing non-linear relationships and
temporal dynamics in groundwater data .
Djurovic et al., (2015), corroborated the
aforementioned claim by demonstrating
the predictive capability of Artificial
Neural Network (ANN) and an Adaptive
Neurofuzzy Inference System (ANFIS) in
forecasting groundwater level changes
using well data and other hydrological
conditions as inputs. Mohanty et al. (
2010) used three ANN algorithms (GDX,
LM, BR) and historical data from 19 sites
to predict groundwater levels in a tropical
humid region. One appealing feature of
ANN:Ss is their ability to develop a relation
between the outputs and inputs of a
process without the physics being
explicitly furnished to them.

XGBoost has been particularly effective
due to its gradient boosting framework,
which improves prediction accuracy by
combining multiple weak learners (Chen
& Guestrin, 2016). Random forests,
another ensemble method, are valued for
their robustness and ability to handle
overfitting (Breiman, 2001). Studies by
(Gaffoor et al., 2020; Vu et al., 2021; Chu
et al., 2022) demonstrate the successful
application of these ML methods in
different geographical
highlighting  their adaptability and
effectiveness. However, the performance

contexts,

Corresponding author’s e-mail:samsonalfa@gmail.com

Samson A.

of machine learning models is highly
dependent on the quality and quantity of
the input data, as well as the feature
engineering process.

This study aims to address the limitations
of existing methods by exploring a data-
driven and adaptable approach for
predicting groundwater levels and
variations in the Sokoto Basin. To achieve
this, the study investigates the
relationships between groundwater levels
and key environmental variables such as
rainfall, soil moisture, temperature and
humidity

1.1 Study Area

The Sokoto Basin in the northwest of
Nigeria occupies approximately 65,000
square kilometres and is situated between
latitudes 10° and 14° N and longitudes 3°
and 7° E. The region as seen in figure 1
comprises of Sokoto and Kebbi States
that is bordered on the north and west by
Niger Republic and on the east by
Zamfara state. The basin is divided into
three main physiographic units: the
coastal lowland of the Niger and lower
Rima rivers, the Sokoto lowlands of the
north/centre, and the uplands or high
plains of the east and southeast averaging
700 meters in height. The primary
drainage system in the basin is composed
of the Rima and Sokoto rivers (Wali et al.,
2023), which converge at Dundaye. Due
to the influx of recharge during the dry
season from several tributaries, base flow,
springs, and the parched water body, the
Sokoto River and its tributaries remain
perennial in nature.
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Figure 1: Location Map of Study Area

The study area is a part of northwest
Nigeria's Sokoto-Rima hydrogeological
region. It represents the Nigerian portion
of the Illumeden sedimentary basin (Wali
et al., 2023), which is centred in Niger
underlain by  interbedded
consolidated gravel, sand, clay, and some
limestone. According to Obaje et al.
(2020) the sedimentary sequences are
stratigraphically subdivided from bottom
to top into several formations: the late
Jurassic to early Cretaceous Illo and
Gundumi Formations, the Maestrichtian
Rima Group, the late Paleocene Sokoto
Group and the Eocene-Miocene Gwandu

semi

5.60°F
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Formation (Figure 2). The study area falls
under moderate to limited aquifer
productivity classes with common
borehole yields in the range 0.1 - 10l/s
(Heckmann et al., 2022). Particularly
interesting is the Sokoto and Rima group
falling under low to limited productive
aquifers that can supply communities via
motorised pumps and hand pumps
(Figure 2). These are indicative of
aquifers that are generally local and
discontinuous, with low permeability and
groundwater storage capacity.
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Figure 2: Hydrogeological Map showing aquifer productivity of the Sokoto Basin as
depicted in “Groundwater resources in the ECOWAS region” Map (The Federal Institute
for Geosciences and Natural Resources [BGR] et al., 2022)

2.0 MATERIALS AND METHODS

2.1 Data Acquisition
Daily groundwater
obtained from Nigeria Hydrological
Services Agency (NIHSA) as the target
variable. The groundwater level is
measured in metres (m) above ground
level. A total of 9 boreholes were found
within the vicinity of the study area.
However, not all boreholes were still
active and the majority of them had

level data were
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significant missing data. It was therefore
necessary to filter the datasets to select
boreholes that would give us the best
results.

At first, the research did not include
boreholes with fewer than five years of
data and more than 30% of missing data.
This meant that six boreholes in the basin
could be used for modelling. The time
series of two selected boreholes is shown
in Figure 3.
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Figure 3: Groundwater fluctuation by month

Worldwide Energy Resource (POWER)
Project funded through the NASA Earth
Science/Applied Science Program. The
data was last accessed on the 12/04/2024.
Rainfall pattern by month is illustrated in
Figure 4 showing peak rainfall in August
and least rainfall in the month of
November to April.

Rainfall, surface temperature, air
humidity, and soil moisture were among
the environmental variables used in this
research that were sourced from the
National  Aeronautics and  Space
Administration (NASA) Langley
Research Centre (LaRC) Prediction of

Rainfall by Month (birnin_kebbi)
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Figure 4: Rainfall by month

Corresponding author’s e-mail:samsonalfa@gmail.com Page | 140

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)



The Application of Machine Learning Algorithms...

2.2 Methods

For groundwater level prediction, we
employed three different machine
learning  models namely LSTM,
XGBOOST and RF models. The entire
workflow for this study, including data
processing, model development, and
analysis, was implemented in Python
using Google Colab. The learned models
are used to forecast groundwater levels.
evaluates the model's performance using
three different indices. Until a drop in
these indices is noticed after a number of
consecutive iterations, the models stay in
the training phase.

The tensorflow library in Python was
used to model all the neural network
architectures. Pandas, NumPy, Seaborn
and Matplotlib were libraries imported
for ~management, processing and
visualisation of data. The workflow,
which consists of four major phases with
unique sub-steps for each, is shown in
Figure 5.

The XGBRegressor function from the
XGBoost library in Python was employed
to model groundwater levels. The data

Target
variable(y)
GWL

Exploratory
data analysis

Data
Acquisition

Data Cleaning
and
Preprocessing

Input
Variable (x)

Climate data . ,
Training (80%)
Hyperparameter
tuning
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was first scaled to standardize feature
values, enhancing the model's
performance. To fine-tune the model's
hyperparameters, a parameter search was
conducted using time series cross-
validation (TSCV) and grid search
(gsearch)  algorithm,  systematically
exploring  different  hyperparameter
values to select the optimal combination.
With the best hyperparameters identified,
the XGBRegressor model was retrained
on the training dataset. The calibrated
model was then used to make predictions
on the test dataset, ensuring accurate
groundwater level forecasts.

Employing the RandomForestRegressor
module from Scikit-learn, the dataset was
initially divided into training and testing
datasets with an 80:20 split (Seidu et al.,
2023). The variables were then scaled
before the model was fitted. In order to
generate a prediction, the model was first
trained using training data and then
applied to test data. Next, the features that
were most significant to the RF model
were determined by looking at the feature
importance.

ML Model
Implementation
*LSTM Testing
*XGBoost (20%)

Model
Evaluation
Metrics

*MAE
*RMSE
*R2

‘RF
SVM

Optimise
hyperparameters

Figure 5: Study Flow chart for data selection and iteration of predictive model to be
chosen.
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2.2.1 Long Short-Term Memory
Network (LSTM): A specialized ANN

Long Short-Term Memory — usually just
called “LSTM are a special kind of
Recurrent Neural Network (RNN) that is
designed to address the issue of vanishing
and exploding gradients in traditional
RNNSs, which can hinder their ability to
learn long-term dependencies(Chu et al.,
2022). The specific calculation method of
a single memory unit at time ¢ is as
follows. The internal structure of an
LSTM memory unit at time t and its
correlation with the state of neighbouring
time memory units. Ascertain what will
happen to the information before time t.
In this stage, the forget gate will be used
to erase any superfluous information. The
sigmoid activation function ¢ is used by
the forget gate. The Equation 1 by (Chu et
al., 2022) is used to compute the forget

gate f¢;
fe = o(Wyr - [Xche—q] + by) (1)

Where the weight matrix is represented
by Ws. the input gate X, and the bias of
the forget gate is represented by by

There are two steps involved in updating
the unit status and deciding what to do
with the new input data. First, the
decision to update or disregard the new
data is made by the sigmoid activation
function. Second, the passed value's
relevance level is determined by
assigning weight to it via the tanh
function. The input gate is obtained using
Equation 2:
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i = o(Ws - [Xphes]| + b;) )
Where W, stands for the weight matrix of
the the calculation unit and bc stands for
the offset term of the calculation unit. The
cell state for the current input is then
determined using h;_, and X, , according
to the Equation 3:

C; = tanh(W,. [X;he_1] + be) 3)

Subsequently, the cell state, C, is
determined using C;_ and f;, as shown
in Equation 4:

C: = ft- Ci—q + it Et 4)

To determine the memory unit's hidden
layer state at time ¢. First, as can be seen
in equation 5, O; in the forget gate selects
which portion of the cell state is output by
the activation function sigmoid.

0 = o(W, - [X¢he—1] + by) (5)

Ultimately, the formula indicates that the
output of LSTM is determined by
tanh(C;)and the output of O, as shown in
Equation 6.

h; = 0;. tanh(C,)
(6)
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2.2.2  eXtreme
(XGBoost)

One of the gradient boosting machine
implementations is called XGBoost
which is recognised as one of the finest
performing algorithms applied for
supervised learning (Osman et al., 2021).
XGBoost is preferred by data scientists
owing to fast execution speed out of core
compute (Bedi et al., 2020; Nasir et al.,
2022; Osman et al., 2021). To minimise
training errors the individual trees are
continually trained on the residual output
of the preceding trees using this iterative
procedure (Al et al., 2022). The equation
7 is an example of the prediction's
mathematical expression:

Gradient Boost

Y=0X) =

S [,
where Y is the forecasted value of the
target, X denotes the input variable, K is
a value that ranges from 1 to n, f} is the
function between input and output
variables, and n is the number of trained
functions by boosting trees. To train
multiple functions f;, in XGBoost, the
loss function must be minimised, as
outlined in equation 8.

L(@) =Xl y) + 3
Zkﬂ(fk) )

1
0 =T +5- Aol?

(7)

©)

Where, L(@) is the regularised function, i
is the loss function measurement between
y; (prediction value) and y; (actual
value). where Q (equation 9) is a
regularisation factor that keeps the model
from becoming less overfitting and error-
prone by preventing the construction of
more trees. w is the score vector on the
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leaf, A is the penalty parameter, T is the
number of leaves, and y is the complexity
of the leaf.

2.2.3 Random Forest (RF)

Random Forest regression is an ensemble
of decision trees DT (based on the results
of multiple decision trees). Using a
subsample of the dataset, each tree is
trained and final value is given by
averaging the whole ensemble. The final
result of the RF algorithm is estimated
from the result of each DT (Arabameri et
al., 2021). This is achieved by using
different predictive parameters in each
generated tree and also by resampling
data with replacement (W. Chen et al.,
2019). Equation 10 may be used to
determine the regression's concluding
outcomes.

y(x) = 10
%25:1 Tp(x;) (10)

A RF model has two user-defined
parameters: B, which denotes the number
of trees in the forest, and T, which denotes
the number of characteristics that are used
to divide the nodes. Where, y is the target
variables and x are the feature variables

2.3 Evaluation Criteria

The effectiveness of machine learning
models in representing the data is
assessed by evaluating their performance
with various metrics (Lazzeri, 2021). The
model is refined in response to feedback,
iteratively, until the target accuracy is
attained.

The study compared the performance of
three machine learning models—LSTM
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(Long Short-Term Memory), XGBoost
(Extreme Gradient Boosting), and
Random Forest (RF)—for predicting
groundwater levels in the Sokoto Basin.
The models were evaluated based on
Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and the
Coefficient of Determination (R?) which
are expressed in equations 11 — 13
(Shakya et al., 2022; Yi et al., 2024). The
number of samples available is indicated
by n, and the observed data and mean
observed data are represented by O; and

3.0 RESULTS AND DISCUSSION

3.1 Model Performance Comparison
The XGBoost algorithm outperformed
the other models with the lowest MAE,
RMSE and a mean R? score of up to 0.849
across all boreholes as shown in Table 1.
It outperformed the LSTM algorithm at
four of the borehole sites. Among the
three algorithms tested, XGBoost took the
longest to build due to the use of the grid
search  tool  for  hyperparameter
optimization, and it also recorded the
highest scores for four borehole sites.

The LSTM algorithm, while typically
suited for time series data, performed less
effectively in this context, possibly due to
the complexity and noisiness of the
groundwater data. The model recorded an
average R? score of 0.765 across all
boreholes. It also had the lowest MAE
and RMSE for the Kangiwa and Marake
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O respectively. The predicted values and
mean predicated value are represented by
P; and P (model output).

1
MAE = 2 S|P, — 0] (11)

RMSE = \/% Y (P, — 0;)? (12)

R? = 0= 00i =P
S0 0) X (P — P)?

(13)

sites, outperforming the XGBoost model
in these areas. Among the three
algorithms tested, the LSTM model
required the least computational time to
build.

The RF regression tree also
performed well at three sites, achieving
an R? score greater than 0.5 for the
boreholes tested. However, it had the
lowest performance among the three
algorithms. The RF model does not rely
on the importance assigned by a single
decision tree but rather selects features
randomly during training. Overall, the
model's performance was reasonable.

Overall, XGBoost consistently
outperforms other models in most
locations, particularly in terms of MAE
and RMSE, and achieves higher R?
values, indicating better fit and predictive
accuracy. LSTM also performs well but is
generally outperformed by XGBoost.
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Table 1: Comparison of Evaluation Metrics of the Three ML Models employed in the
Sokoto Basin. The top-performing model is marked in blue

LOCATION METRIC LSTM XGBOOST RF

KANGIWA  MAE 0.622 0.757 2.198
RMSE 0.818 2.086 2.662

R? 0.972 0.774 0.633

MARNONA MAE 2311 0.747 4.277
RMSE 3.463 2.858 5.647

R? 0.624 0.745 0.005

BKEBBI MAE 0.270 0.090 0.456
RMSE 0.309 0.188 0.690

R? 0.850 0.944 0.239

MARAKE MAE 0.234 0.214 0.793
RMSE 0.242 0.563 1.019
R? 0.495 -1.714 -7.895

ASARE MAE 0.082 0.016 0.119
RMSE 0.110 0.051 0.172

R? 0.811 0.961 0.547

TJEGA MAE 0.425 0.075 0.673
RMSE 0.586 0.254 0.898

R? 0.838 0.971 0.632

RF

LSTM

XGBOOST

'|Il‘I

0.0 0.5 1.0 1.5 2.0

mR? mRMSE mMAE

Figure6: Bar Graph Showing Model Averages
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3.2 Feature Importance

The best performing model, the XGBoost
was particularly utilized to assess the
importance of various input parameters.
By analysing the feature importance
scores generated by XGBoost, we
constructed input combinations using the
most influential parameters, as illustrated
in Figure 7.

Samson A.

The XGBoost analysis revealed that soil
moisture is the most critical factor in
predicting groundwater levels, followed
by temperature and humidity.
Interestingly, rainfall was found to be the
least significant parameter according to
the importance scores assigned by
XGBoost, suggesting that its influence on
groundwater levels in the study area is
minimal compared to the other factors.

Features importance

soil_moisture

temperature

humidity

rainfall

T T
™ m
= =
Importance

I
=
(=]

0.1
0.4 4

Figure 7: Analysis of Feature Importance using XGBoost Model

Finally, rainfall is the feature that
recorded the lowest correlation score of
0.08. Despite the expectation that rainfall
would have a higher correlation score due
to its role in increasing water levels, the
results did not align with this assumption.
Similar study by Kanyama et al. (2020)
experienced the same phenomena which
prompted the use of decomposed signals

Corresponding author’s e-mail:samsonalfa@gmail.com

of the time series which is common
practice in machine learning. The
significant noise in the dataset (see Figure
4) led to lower scores for the actual
rainfall values, affecting the feature’s
ability to capture relationships effectively
(Gibson, 2020)

Page|l

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY)




The Application of Machine Learning Algorithms...

3.2.1 Implementation of LSTM

The LSTM model was trained using the
training dataset and then applied to the
test dataset for predictions. The
hyperparameters for LSTM model
including the learning rate, hidden unit
and optimizer to achieve the best
performance were set through a trial-and-
error method for groundwater level
forecasting across different wells.

Figure 8 expresses the comparison
between the actual and predicted
groundwater levels using the LSTM
model for various boreholes, highlighting

Samson A.

the model's performance. It means that
LSTM  model provides accurate
predictions, effectively capturing the
peaks and valleys of the observed
groundwater levels and closely aligning
with the actual data points. In the
Kangiwa borehole, the LSTM model's
predictions match the actual groundwater
levels closely, as indicated by the MAE of
0.62 and RMSE of 0.81, resulting in an R?
value of 0.97. This level of precision is
also evident in the other boreholes asides
from Marnona where it could not retrace
after capturing the peaks.
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Figure 8: Time-series plot comparing the actual and predicted groundwater levels at

selected boreholes using LSTM
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3.1.2 Implementation of XGBOOST

The XGBOOST prediction graphs exhibit
random peaks due to the model's
sensitivity to noise, unlike the smoother
predictions produced by the LSTM
model. This noise-induced variability is
particularly evident in the Marnona and
Marake sites (see Figure 9). Despite this,

Samson A.

the models overall yielded strong
performance, as reflected in the error
indices, with MAE ranging from 0.016 to
0.757m and RMSE ranging from 0.051 to
2.859m. Figure 9 plots the ground truth
values for groundwater level against the
predicted values.
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Figure 9: Time-series plot comparing the actual and predicted groundwater levels at

selected boreholes using XGBoost

2.2.3 Implementation of Random
Forest Model

The Random Forest is the last method that
was implemented on our dataset and
Figure 10 illustrates the performance of

This work is licensed under a
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the Random Forest (RF) model across the
six borehole locations, demonstrating its
effectiveness in predicting groundwater
levels. As seen in Figure 4.4, the model
predictions exhibited noticeable
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variations in their trends, failing to
capture the underlying gradual pattern in
groundwater levels with the utmost
precision which can be attributed to
hyperparameter  tuning. This  was
particularly evident in the case of the
Marake borehole, where the R? value of -
7.895 presented a significant outlier.
Nevertheless, the overall performance of

the models was deemed to be satisfactory.
This assertion is corroborated by the error
metrics, which indicate that MAE values
ranged between 0.016 and 0.757m, while
RMSE values fell between 0.051 and
2.859m. The models were able to estimate
groundwater levels with an acceptable
degree of accuracy, despite the inherent
complexities of the system.
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Figure 10: Time-series plot comparing the actual and predicted groundwater levels at

selected boreholes using RF
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4.0 CONCLUSION

This study evaluated the application of
machine learning methods for predicting
groundwater levels in the Sokoto Basin. A
comparative analysis of different machine
learning models demonstrated  that
XGBoost effectively predicts groundwater
levels using inputs such as precipitation,
rainfall, temperature, soil moisture, and
humidity. The LSTM model also showed
strong performance, particularly in
capturing the peaks and valleys of the
groundwater level time series, with MAE
and RMSE values ranging from 0.016 —
0.757m and 0.051 — 2.859m, respectively.
The RF model exhibited reliable
performance across most locations.
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